1
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
2
|
Krause BJ, Vega-Tapia FA, Soto-Carrasco G, Lefever I, Letelier C, Saez CG, Castro-Rodriguez JA. Maternal obesity and high leptin levels prime pro-inflammatory pathways in human cord blood leukocytes. Placenta 2023; 142:75-84. [PMID: 37651852 DOI: 10.1016/j.placenta.2023.08.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Maternal obesity alters the immune function in the offspring. We hypothesize that maternal obesity and pro-inflammatory pathways induce leptin-related genes in neonatal monocytes, whereby high leptin levels enhance their inflammatory response. METHODS Transcriptional profiles of cord blood leukocytes (CBL) in basal and pro-inflammatory conditions were studied to determine differentially expressed genes (DEG). The DNA methylation profile of CB monocytes (CBM) of neonates born to control BMI mothers and women with obesity was assayed to identify differentially methylated probes (DMP). CBM-derived macrophages were cultured with or without leptin (10-100 ng/ml) and then stimulated with lipopolysaccharide (LPS, 100 ng/ml) and interferon-gamma (20 ng/ml) to assess the induction of TNF-α and IL-10 transcripts. RESULTS CBL from pregnancies with obesity (CBL-Ob) showed 12,183 DEG, affecting 49 out of 78 from the leptin pathway. Control CBM exposed to LPS showed 45 leptin-related DEG, an effect prevented by the co-exposure to LPS and IL-10. Conversely, CBM-Ob showed 5279 DMP enriched in insulin- and leptin-related genes, and Lasso regression of leptin-related DMP showed high predictive value for plasma leptin levels (r2 = 0.9897) and maternal BMI categories (AUC = 1). Chronic exposure to leptin increased TNF-α and decreased IL-10 levels in control BMI samples but not in Ob-CBM. Enhanced TNF-α induction after proinflammatory stimulation was observed in leptin-treated control BMI samples. DISCUSSION Obesity in pregnancy is associated with a distinctive expression and DNA methylation profile of leptin-related genes in cord blood monocytes, meanwhile, leptin enhances the expression of pro-inflammatory cytokines upon stimulation with M1-skewing agents.
Collapse
Affiliation(s)
- Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| | - Fabian A Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gustavo Soto-Carrasco
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora Lefever
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Letelier
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia G Saez
- Hematology-Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose A Castro-Rodriguez
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Chang R, Zhang Y, Sun J, Xu K, Li C, Zhang J, Mei W, Zhang H, Zhang J. Maternal pre-pregnancy body mass index and offspring with overweight/obesity at preschool age: The possible role of epigenome-wide DNA methylation changes in cord blood. Pediatr Obes 2023; 18:e12969. [PMID: 36102013 DOI: 10.1111/ijpo.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epigenome-wide association studies have identified some DNA methylation sites associated with body mass index (BMI) or obesity. Studies in the Asian population are lacking. OBJECTIVE To examine the association of cord blood genome-wide DNA methylation (GWDm) changes with maternal pre-pregnancy BMI and children's BMI-z score at preschool age. Additionally, we also explored the genome-wide differentially methylated regions and differentially methylated probes between preschoolers with overweight/obesity and normal-weight counterparts. METHODS This two-stage study design included (1) a GWDm analysis of 30 mother-child pairs from 633 participants of the Zhuhai birth cohort with data on newborn cord blood, maternal pre-pregnancy BMI, and children's BMI at 3 years of age; and (2) a targeted validation analysis of the cord blood of ten children with overweight/obesity and ten matched controls to validate the CpG sites. RESULTS In the first stage, no significant CpG sites were found to be associated with children's BMI-z score at preschool age after FDR correction with the p-values of the CpG sites in FOXN3 (cg23501836) and ZNF264 (cg27437574) being close to 1 × 10-6 . In the second stage, a significant difference of CpG sites in AHRR (chr5:355067-355068) and FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) was found between the ten children with overweight/obesity and ten controls (p < 0.05). The CpG sites in FOXN3 (chr14:89630264-89630272 and chr14:89630295-89630296) and ZNF264 (chr19: 57703104-57703107 and chr19: 57703301-57703307) were associated with children's BMI-z score; and the CpG sites in FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) were associated with maternal pre-pregnancy BMI. CONCLUSIONS DNA methylation in FOXN3 and AHRR is associated with overweight/obesity in preschool-aged children, and the methylation in FOXN3 and ZNF264 might be associated with children's BMI-z score. FOXN3 methylation may be associated with maternal pre-pregnancy BMI, suggesting its potential role in the children's BMI-z score or overweight/obesity. Our results provide novel insights into the mechanisms of children's obesity.
Collapse
Affiliation(s)
- Ruixia Chang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Sun
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Xu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunan Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingli Zhang
- Traditional Chinese Medicine Hospital, Zhuhai, Guangdong, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Hongzhong Zhang
- Zhuhai Women and Children's Hospital, Zhuhai, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang H, Xue F, Zhao H, Chen L, Wang T, Wu X. DNA methylation status of DNAJA4 is essential for human erythropoiesis. Epigenomics 2022; 14:1249-1267. [DOI: 10.2217/epi-2022-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aims: To investigate DNA methylation patterns in early and terminal stages of erythropoiesis, and to explore the function of differentially methylated genes in erythropoiesis and erythroid disorders. Materials & methods: Differential analysis of DNA methylation and gene expression during erythropoiesis, as well as weighted gene coexpression network analysis of acute myeloid leukemia was performed. Results: We identified four candidate genes that possessed differential methylation in the promoter regions. DNAJA4 affected proliferation, apoptosis and enucleation during terminal erythropoiesis and was associated with the prognosis of acute myeloid leukemia. DNAJA4 was specifically highly expressed in erythroleukemia and is associated with DNA methylation. Conclusion: DNAJA4 plays a crucial role for erythropoiesis and is regulated via DNA methylation. Dysregulation of DNAJA4 expression is associated with erythroid disorders.
Collapse
Affiliation(s)
- Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Fumin Xue
- Department of Gastroenterology, Children’s Hospital affiliated of Zhengzhou University, Zhengzhou, 450000, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Bozack AK, Colicino E, Just AC, Wright RO, Baccarelli AA, Wright RJ, Lee AG. Associations between infant sex and DNA methylation across umbilical cord blood, artery, and placenta samples. Epigenetics 2021; 17:1080-1097. [PMID: 34569420 PMCID: PMC9542631 DOI: 10.1080/15592294.2021.1985300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA methylation (DNAm) is vulnerable to dysregulation by environmental exposures during epigenetic reprogramming that occurs in embryogenesis. Sexual dimorphism in environmentally induced DNAm dysregulation has been identified and therefore it is important to understand sex-specific DNAm patterns. DNAm at several autosomal sites has been consistently associated with sex in cord blood and placental foetal tissues. However, there is limited research comparing sex-specific DNAm across tissues, particularly differentially methylated regions (DMRs). This study leverages DNAm data measured using the Illumina HumanMethylation450 BeadChip in cord blood (N = 179), placenta (N = 229), and umbilical artery samples (N = 229) in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort to identify autosomal DMRs and differentially methylated positions (DMPs). A replication analyses was conducted in an independent cohort (GEO Accession GSE129841). We identified 183, 257, and 419 DMRs and 2119, 2281, and 3405 DMPs (pBonferroni < 0.05) in cord blood, placenta, and artery samples, respectively. Thirty-nine DMRs overlapped in all three tissues, overlapping with genes involved in spermatogenesis (NKAPL, PIWIL2 and AURKC) and X-inactivation (LRIF1). In replication analysis, 85% of DMRs overlapped with those identified in PRISM. Overall, DMRs and DMPs had higher methylation levels among females in cord blood and artery samples, but higher methylation levels among males in placenta samples. Further research is necessary to understand biological mechanisms that contribute to differences in sex-specific DNAm signatures across tissues, as well as to determine if sexual dimorphism in the epigenome impacts response to environmental stressors.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Departments of Environmental Health Sciences and Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison G Lee
- Division of Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
FTO and PLAG1 Genes Expression and FTO Methylation Predict Changes in Circulating Levels of Adipokines and Gastrointestinal Peptides in Children. Nutrients 2021; 13:nu13103585. [PMID: 34684585 PMCID: PMC8538237 DOI: 10.3390/nu13103585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Adipokines and gastrointestinal tract hormones are important metabolic parameters, and both epigenetic factors and differential gene expression patterns may be associated with the alterations in their concentrations in children. The function of the FTO gene (FTO alpha-ketoglutarate dependent dioxygenase) in the regulation of the global metabolic rate is well described, whereas the influence of protooncogene PLAG1 (PLAG1 zinc finger) is still not fully understood. A cross-sectional study on a group of 26 children with various BMI values (15.3–41.7; median 28) was carried out. The aim was to evaluate the dependencies between the level of methylation and expression of aforementioned genes with the concentration of selected gastrointestinal tract hormones and adipokines in children. Expression and methylation were measured in peripheral blood mononuclear DNA by a microarray technique and a restriction enzyme method, respectively. All peptide concentrations were determined using the enzyme immunoassay method. The expression level of both FTO and PLAG1 genes was statistically significantly related to the concentration of adipokines: negatively for apelin and leptin receptor, and positively for leptin. Furthermore, both FTO methylation and expression negatively correlated with the concentration of resistin and visfatin. Cholecystokinin was negatively correlated, whereas fibroblast growth factor 21 positively correlated with methylation and expression of the FTO gene, while FTO and PLAG1 expression was negatively associated with the level of cholecystokinin and glucagon-like peptide-1. The PLAG1 gene expression predicts an increase in leptin and decrease in ghrelin levels. Our results indicate that the FTO gene correlates with the concentration of hormones produced by the adipose tissue and gastrointestinal tract, and PLAG1 gene may be involved in adiposity pathogenesis. However, the exact molecular mechanisms still need to be clarified.
Collapse
|
7
|
Czogała W, Czogała M, Kwiecińska K, Bik-Multanowski M, Tomasik P, Hałubiec P, Łazarczyk A, Miklusiak K, Skoczeń S. The Expression of Genes Related to Lipid Metabolism and Metabolic Disorders in Children before and after Hematopoietic Stem Cell Transplantation-A Prospective Observational Study. Cancers (Basel) 2021; 13:3614. [PMID: 34298827 PMCID: PMC8306759 DOI: 10.3390/cancers13143614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic disorders in children after hematopoietic stem cell transplantation (HSCT) are poorly characterized. However, it is known that dyslipidemia and insulin resistance are particularly common in these patients. We conducted a prospective study of 27 patients treated with HSCT to assess the possibility of predicting these abnormalities. We measured gene expressions using a microarray technique to identify differences in expression of genes associated with lipid metabolism before and after HSCT. In patients treated with HSCT, total cholesterol levels were significantly higher after the procedure compared with the values before HSCT. Microarray analysis revealed statistically significant differences in expressions of three genes, DPP4, PLAG1, and SCD, after applying the Benjamini-Hochberg procedure (pBH < 0.05). In multiple logistic regression, the increase of DPP4 gene expression before HCST (as well as its change between pre- and post-HSCT status) was associated with dyslipidemia. In children treated with HSCT, the burden of lipid disorders in short-term follow-up seems to be lower than before the procedure. The expression pattern of DPP4 is linked with dyslipidemia after the transplantation.
Collapse
Affiliation(s)
- Wojciech Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (K.K.)
| | - Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (K.K.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Kinga Kwiecińska
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (K.K.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław Tomasik
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław Hałubiec
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.H.); (A.Ł.); (K.M.)
| | - Agnieszka Łazarczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.H.); (A.Ł.); (K.M.)
| | - Karol Miklusiak
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.H.); (A.Ł.); (K.M.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (K.K.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
8
|
Czogała W, Czogała M, Strojny W, Wątor G, Wołkow P, Wójcik M, Bik Multanowski M, Tomasik P, Wędrychowicz A, Kowalczyk W, Miklusiak K, Łazarczyk A, Hałubiec P, Skoczeń S. Methylation and Expression of FTO and PLAG1 Genes in Childhood Obesity: Insight into Anthropometric Parameters and Glucose-Lipid Metabolism. Nutrients 2021; 13:1683. [PMID: 34063412 PMCID: PMC8155878 DOI: 10.3390/nu13051683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of childhood obesity is influenced by both genetic and epigenetic factors. FTO (FTO alpha-ketoglutarate dependent dioxygenase) is a gene of well-established connection with adiposity, while a protooncogene PLAG1 (PLAG1 zinc finger) has been only recently linked to this condition. We performed a cross-sectional study on a cohort of 16 obese (aged 6.6-17.7) and 10 healthy (aged 11.4-16.9) children. The aim was to evaluate the relationship between methylation and expression of the aforementioned genes and the presence of obesity as well as alterations in anthropometric measurements (including waist circumference (WC), body fat (BF_kg) and body fat percent (BF_%)), metabolic parameters (lipid profile, blood glucose and insulin levels, presence of insulin resistance) and blood pressure. Expression and methylation were measured in peripheral blood mononuclear cells using a microarray technique and a method based on restriction enzymes, respectively. Multiple regression models were constructed to adjust for the possible influence of age and sex on the investigated associations. We showed significantly increased expression of the FTO gene in obese children and in patients with documented insulin resistance. Higher FTO expression was also associated with an increase in WC, BF_kg, and BF_% as well as higher fasting concentration of free fatty acids (FFA). FTO methylation correlated positively with WC and BF_kg. Increase in PLAG1 expression was associated with higher BF%. Our results indicate that the FTO gene is likely to play an important role in the development of childhood adiposity together with coexisting impairment of glucose-lipid metabolism.
Collapse
Affiliation(s)
- Wojciech Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Wojciech Strojny
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Gracjan Wątor
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Mirosław Bik Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław Tomasik
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Andrzej Wędrychowicz
- Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Wojciech Kowalczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Karol Miklusiak
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Agnieszka Łazarczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Przemysław Hałubiec
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
9
|
Vales-Villamarín C, Ortega-Senovilla H, de Dios O, Pérez-Nadador I, Gavela-Pérez T, Soriano-Guillén L, Garcés C. Leptin Concentration, Obesity, and Plasma Non-esterified Fatty Acid Levels in Children. Front Pediatr 2021; 9:812779. [PMID: 35071145 PMCID: PMC8770974 DOI: 10.3389/fped.2021.812779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The association between obesity and higher non-esterified fatty acid (NEFA) levels has been established in adults. In contrast, lower NEFA levels have been described in children with obesity although the reason behind this association remains unclear. Leptin, which regulates body weight and plays a role in lipolysis, could be involved in this relationship. We evaluated the influence of leptin in the association between obesity and NEFA concentrations in children, analyzing two cohorts including 684 6- to 8-year-olds and 836 12- to 16-year-old children, respectively. After adjusting by leptin, insulin levels remained significantly higher in adolescents with obesity as compared with levels in those without obesity. However, insulin levels showed no differences between prepubertal children with and without obesity. The significantly lower NEFA concentrations observed in 6- to 8-year-old girls with obesity disappeared when comparing NEFA levels between girls with and without obesity after adjusting by leptin. We report an influence of leptin levels on the association between obesity and insulin and NEFA in young children that is not observed in adolescents. Our findings add information about factors that may contribute to explain the lower NEFA levels described in prepubertal children with obesity.
Collapse
Affiliation(s)
- Claudia Vales-Villamarín
- Lipid Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Olaya de Dios
- Lipid Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iris Pérez-Nadador
- Lipid Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Teresa Gavela-Pérez
- Department of Pediatrics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Leandro Soriano-Guillén
- Department of Pediatrics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Garcés
- Lipid Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Emerald B, Kaimala S, Ansari S. Risk factors which influence DNA methylation in childhood obesity. HAMDAN MEDICAL JOURNAL 2021. [DOI: 10.4103/hmj.hmj_15_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Kim JG, Lee BJ, Jeong JK. Temporal Leptin to Determine Cardiovascular and Metabolic Fate throughout the Life. Nutrients 2020; 12:nu12113256. [PMID: 33114326 PMCID: PMC7690895 DOI: 10.3390/nu12113256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Leptin links peripheral adiposity and the central nervous system (CNS) to regulate cardiometabolic physiology. Within the CNS, leptin receptor-expressing cells are a counterpart to circulating leptin, and leptin receptor-mediated neural networks modulate the output of neuroendocrine and sympathetic nervous activity to balance cardiometabolic homeostasis. Therefore, disrupted CNS leptin signaling is directly implicated in the development of metabolic diseases, such as hypertension, obesity, and type 2 diabetes. Independently, maternal leptin also plays a central role in the development and growth of the infant during gestation. Accumulating evidence points to the dynamic maternal leptin environment as a predictor of cardiometabolic fate in their offspring as it is directly associated with infant metabolic parameters at birth. In postnatal life, the degree of serum leptin is representative of the level of body adiposity/weight, a driving factor for cardiometabolic alterations, and therefore, the levels of blood leptin through the CNS mechanism, in a large part, are a strong determinant for future cardiometabolic fate. The current review focuses on highlighting and discussing recent updates for temporal dissection of leptin-associated programing of future cardiometabolic fate throughout the entire life.
Collapse
Affiliation(s)
- Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea;
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (B.J.L.); (J.K.J.); Tel.: +82-52-259-2351 (B.J.L.); +1-202-994-9815 (J.K.J.)
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
- Correspondence: (B.J.L.); (J.K.J.); Tel.: +82-52-259-2351 (B.J.L.); +1-202-994-9815 (J.K.J.)
| |
Collapse
|