1
|
Diniz-Sousa R, Silva CCA, Pereira SS, da Silva SL, Fernandes PA, Teixeira LMC, Zuliani JP, Soares AM. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int J Biol Macromol 2023; 238:124357. [PMID: 37028634 DOI: 10.1016/j.ijbiomac.2023.124357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil
| | - Cleópatra C A Silva
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Saulo L da Silva
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
| | - Pedro A Fernandes
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Luís M C Teixeira
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil; Faculdade Católica de Rondônia (FCR), Porto Velho, Rondônia, Brazil.
| |
Collapse
|
2
|
Gritti MA, González KY, Tavares FL, Teibler GP, Peichoto ME. Exploring the antibacterial potential of venoms from Argentinian animals. Arch Microbiol 2023; 205:121. [PMID: 36934358 DOI: 10.1007/s00203-023-03465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023]
Abstract
The resistance to antimicrobials developed by several bacterial species has become one of the main health problems in recent decades. It has been widely reported that natural products are important sources of antimicrobial compounds. Considering that animal venoms are under-explored in this line of research, in this study, we screened the antibacterial activity of venoms of eight snake and five lepidopteran species from northeastern Argentina. Twofold serial dilutions of venoms were tested by the agar well-diffusion method and the minimum inhibitory concentration (MIC) determination against seven bacterial strains. We studied the comparative protein profile of the venoms showing antibacterial activity. Only the viperid and elapid venoms showed remarkable dose-dependent antibacterial activity towards most of the strains tested. Bothrops diporus venom showed the lowest MIC values against all the strains, and S. aureus ATCC 25923 was the most sensitive strain for all the active venoms. Micrurus baliocoryphus venom was unable to inhibit the growth of Enterococcus faecalis. Neither colubrid snake nor lepidopteran venoms exhibited activity on any bacterial strain tested. The snake venoms exhibiting antibacterial activity showed distinctive protein profiles by SDS-PAGE, highlighting that we could reveal for the first time the main protein families which may be thought to contribute to the antibacterial activity of M. baliocoryphus venom. This study paves the way to search for new antibacterial agents from Argentinian snake venoms, which may be a further opportunity to give an added value to the local biodiversity.
Collapse
Affiliation(s)
- Micaela A Gritti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina
| | - Karen Y González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - Flavio L Tavares
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil
| | - Gladys P Teibler
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - María E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina.
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil.
| |
Collapse
|
3
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
4
|
Esmaeilishirazifard E, Usher L, Trim C, Denise H, Sangal V, Tyson GH, Barlow A, Redway KF, Taylor JD, Kremyda-Vlachou M, Davies S, Loftus TD, Lock MMG, Wright K, Dalby A, Snyder LAS, Wuster W, Trim S, Moschos SA. Bacterial Adaptation to Venom in Snakes and Arachnida. Microbiol Spectr 2022; 10:e0240821. [PMID: 35604233 PMCID: PMC9248900 DOI: 10.1128/spectrum.02408-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Animal venoms are considered sterile sources of antimicrobial compounds with strong membrane-disrupting activity against multidrug-resistant bacteria. However, venomous bite wound infections are common in developing nations. Investigating the envenomation organ and venom microbiota of five snake and two spider species, we observed venom community structures that depend on the host venomous animal species and evidenced recovery of viable microorganisms from black-necked spitting cobra (Naja nigricollis) and Indian ornamental tarantula (Poecilotheria regalis) venoms. Among the bacterial isolates recovered from N. nigricollis, we identified two venom-resistant, novel sequence types of Enterococcus faecalis whose genomes feature 16 virulence genes, indicating infectious potential, and 45 additional genes, nearly half of which improve bacterial membrane integrity. Our findings challenge the dogma of venom sterility and indicate an increased primary infection risk in the clinical management of venomous animal bite wounds. IMPORTANCE Notwithstanding their 3 to 5% mortality, the 2.7 million envenomation-related injuries occurring annually-predominantly across Africa, Asia, and Latin America-are also major causes of morbidity. Venom toxin-damaged tissue will develop infections in some 75% of envenomation victims, with E. faecalis being a common culprit of disease; however, such infections are generally considered to be independent of envenomation. Here, we provide evidence on venom microbiota across snakes and arachnida and report on the convergent evolution mechanisms that can facilitate adaptation to black-necked cobra venom in two independent E. faecalis strains, easily misidentified by biochemical diagnostics. Therefore, since inoculation with viable and virulence gene-harboring bacteria can occur during envenomation, acute infection risk management following envenomation is warranted, particularly for immunocompromised and malnourished victims in resource-limited settings. These results shed light on how bacteria evolve for survival in one of the most extreme environments on Earth and how venomous bites must be also treated for infections.
Collapse
Affiliation(s)
- Elham Esmaeilishirazifard
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
- Westminster Genomic Services, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Louise Usher
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
- Westminster Genomic Services, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Carol Trim
- School of Psychology and Life Sciences, Faculty of Science, Engineering and Social Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Hubert Denise
- EMBL-EBI European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Vartul Sangal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, United Kingdom
| | - Gregory H. Tyson
- Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA
| | - Axel Barlow
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Keith F. Redway
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - John D. Taylor
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
- Westminster Genomic Services, Faculty of Science and Technology, University of Westminster, London, United Kingdom
- School of Environment and Life Sciences, University of Salford, Salford, Greater Manchester, United Kingdom
| | - Myrto Kremyda-Vlachou
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Sam Davies
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, United Kingdom
| | | | | | - Kstir Wright
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Andrew Dalby
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Lori A. S. Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, London, United Kingdom
| | - Wolfgang Wuster
- Molecular Ecology and Evolution at Bangor, School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Steve Trim
- Venomtech, Ltd., Sandwich, Kent, United Kingdom
| | - Sterghios A. Moschos
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
- Westminster Genomic Services, Faculty of Science and Technology, University of Westminster, London, United Kingdom
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, United Kingdom
| |
Collapse
|
5
|
Simões-Silva R, Alfonso JJ, Gómez AF, Sobrinho JC, Kayano AM, de Medeiros DSS, Teles CBG, Quintero A, Fuly AL, Gómez CV, Pereira SS, da Silva SL, Stábeli RG, Soares AM. Synergism of in vitro plasmodicidal activity of phospholipase A2 isoforms isolated from panamanian Bothrops asper venom. Chem Biol Interact 2021; 346:109581. [PMID: 34302801 DOI: 10.1016/j.cbi.2021.109581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Bothrops asper is one of the most important snake species in Central America, mainly because of its medical importance in countries like Ecuador, Panama and Costa Rica, where this species causes a high number of snakebite accidents. Several basic phospholipases A2 (PLA2s) have been previously characterized from B. asper venom, but few studies have been carried out with its acidic isoforms. In addition, since snake venom is a rich source of bioactive substances, it is necessary to investigate the biotechnological potential of its components. In this context, this study aimed to carry out the biochemical characterization of PLA2 isoforms isolated from B. asper venom and to evaluate the antiparasitic potential of these toxins. The venom and key fractions were subjected to different chromatographic steps, obtaining nine PLA2s, four acidic ones (BaspAc-I, BaspAc-II, BaspAc-III and BaspAc-IV) and five basic ones (BaspB-I, BaspB-II, BaspB-III, BaspB-IV and BaspB-V). The isoelectric points of the acidic PLA2s were also determined, which presented values ranging between 4.5 and 5. The findings indicated the isolation of five unpublished isoforms, four Asp49-PLA, corresponding to the group of acidic isoforms, and one Lys49-PLA2-like. Acidic PLA2s catalyzed the degradation of all substrates evaluated; however, for the basic PLA2s, there was a preference for phosphatidylglycerol and phosphatidic acid. The antiparasitic potential of the toxins was evaluated, and the acidic PLA2s demonstrated action against the epimastigote forms of T. cruzi and promastigote forms of L. infantum, while the basic PLA2s BaspB-II and BaspB-IV showed activity against P. falciparum. The results indicated an increase of up to 10 times in antiplasmodial activity, when the Asp49-PLA2 and Lys49-PLA2 were associated with one another, denoting synergistic action between these PLA2 isoforms. These findings correspond to the first report of synergistic antiplasmodial action for svPLA2s, demonstrating that these molecules may be important targets in the search for new antiparasitic agents.
Collapse
Affiliation(s)
- Rodrigo Simões-Silva
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, IFRO, Campus Vilhena, Vilhena, RO, Brazil
| | - Jorge Javier Alfonso
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Centro Para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - Ana F Gómez
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Centro Para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - Juliana C Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Anderson M Kayano
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Centro de Pesquisa em Medicina Tropical, CEPEM-SESAU/RO, Porto Velho, RO, Brazil
| | - Daniel S S de Medeiros
- Plataforma de Bioensaios em Malária e Leishmanioses, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Carolina B G Teles
- Plataforma de Bioensaios em Malária e Leishmanioses, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Brazil
| | - Aristides Quintero
- Centro de Informaciones e Investigaciones Toxicológicas y Químicas Aplicadas (CEIITOXQUIA) and Departamento de Química, FCNYE, Universidad Autónoma de Chiriquí, UNACHI, David, Panama
| | - André L Fuly
- Universidade Federal Fluminense, UFF, Niteroi, RJ, Brazil
| | - Celeste Vega Gómez
- Centro Para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Saulo L da Silva
- Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador; LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Rodrigo G Stábeli
- Fundação Oswaldo Cruz, FIOCRUZ, Plataforma Bi-institucional de Medicina Translacional. Ribeirão Preto, SP, Brazil
| | - Andreimar M Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Brazil; Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil.
| |
Collapse
|