1
|
Khandagale P, Lin H, Liu L, Sharma P. Statistical mechanics of cell aggregates: explaining the phase transition and paradoxical piezoelectric behavior of soft biological tissues. SOFT MATTER 2025. [PMID: 40195723 DOI: 10.1039/d5sm00035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Piezoelectricity in biological soft tissues is a controversial issue with differing opinions. While there is compelling experimental evidence to suggest a piezoelectric-like response in tissues such as the aortic wall (among others), there are equally compelling experiments that argue against this notion. In addition, the lack of a polar structure in the underlying components of most soft biological tissues supports the latter. In this paper, we address the collective behavior of cells within a two-dimensional cell aggregate from the viewpoint of statistical mechanics. Our starting point is the simplest form of energy for cell behavior that only includes known observable facts e.g., the electrical Maxwell stress or electrostriction, resting potential across cell membranes, elasticity, and we explicitly exclude any possibility of electromechanical coupling reminiscent of piezoelectricity at the cellular level. We coarse-grain our cellular aggregate to obtain its emergent mechanical, physical, and electromechanical properties. Our findings indicate that the fluctuation of cellular strain (E) plays a similar role as the absolute temperature in a conventional atomistic-level statistical model. The coarse-grained effective free energy reveals several intriguing features of the collective behavior of cell aggregates, such as solid-fluid phase transitions and a distinct piezoelectric-like coupling, even though it is completely absent at the microscale. Closed-form formulas are obtained for key electromechanical properties, including stiffness, effective resting potential, critical E2-temperature (or fluctuation) for solid-fluid phase transitions, and apparent piezoelectric coupling in terms of fluctuation and electric potential regulated by active cellular processes.
Collapse
Affiliation(s)
- Pratik Khandagale
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Jersey, 08854, USA.
| | - Liping Liu
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Jersey, 08854, USA.
- Department of Mathematics, Rutgers University, New Jersey, 08854, USA
| | - Pradeep Sharma
- Departments of Mechanical Engineering, Physics, and the Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
2
|
Panconi L, Euchner J, Tashev SA, Makarova M, Herten DP, Owen DM, Nieves DJ. Mapping membrane biophysical nano-environments. Nat Commun 2024; 15:9641. [PMID: 39511199 PMCID: PMC11544141 DOI: 10.1038/s41467-024-53883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
The mammalian plasma membrane is known to contain domains with varying lipid composition and biophysical properties. However, studying these membrane lipid domains presents challenges due to their predicted morphological similarity to the bulk membrane and their scale being below the classical resolution limit of optical microscopy. To address this, we combine the solvatochromic probe di-4-ANEPPDHQ, which reports on its biophysical environment through changes in its fluorescence emission, with spectrally resolved single-molecule localisation microscopy. The resulting data comprises nanometre-precision localisation coordinates and a generalised polarisation value related to the probe's environment - a marked point pattern. We introduce quantification algorithms based on topological data analysis (PLASMA) to detect and map nano-domains in this marked data, demonstrating their effectiveness in both artificial membranes and live cells. By leveraging environmentally sensitive fluorophores, multi-modal single molecule localisation microscopy, and advanced analysis methods, we achieve nanometre scale mapping of membrane properties and assess changes in response to external perturbation with methyl-β-cyclodextrin. This integrated methodology represents an integrated toolset for investigating marked point pattern data at nanometre spatial scales.
Collapse
Affiliation(s)
- Luca Panconi
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
- School of Physics and Astronomy, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
| | - Jonas Euchner
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
| | - Stanimir A Tashev
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
| | - Maria Makarova
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
- School of Biosciences, College of Life and Environmental Science, University of Birmingham, Birmingham, UK
- Department of Metabolism and Systems Science, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Dirk-Peter Herten
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
| | - Dylan M Owen
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
| | - Daniel J Nieves
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Shin B, An G, Cockrell RC. Examining B-cell dynamics and responsiveness in different inflammatory milieus using an agent-based model. PLoS Comput Biol 2024; 20:e1011776. [PMID: 38261584 PMCID: PMC10805321 DOI: 10.1371/journal.pcbi.1011776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION B-cells are essential components of the immune system that neutralize infectious agents through the generation of antigen-specific antibodies and through the phagocytic functions of naïve and memory B-cells. However, the B-cell response can become compromised by a variety of conditions that alter the overall inflammatory milieu, be that due to substantial, acute insults as seen in sepsis, or due to those that produce low-level, smoldering background inflammation such as diabetes, obesity, or advanced age. This B-cell dysfunction, mediated by the inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α), increases the susceptibility of late-stage sepsis patients to nosocomial infections and increases the incidence or severity of recurrent infections, such as SARS-CoV-2, in those with chronic conditions. We propose that modeling B-cell dynamics can aid the investigation of their responses to different levels and patterns of systemic inflammation. METHODS The B-cell Immunity Agent-based Model (BCIABM) was developed by integrating knowledge regarding naïve B-cells, short-lived plasma cells, long-lived plasma cells, memory B-cells, and regulatory B-cells, along with their various differentiation pathways and cytokines/mediators. The BCIABM was calibrated to reflect physiologic behaviors in response to: 1) mild antigen stimuli expected to result in immune sensitization through the generation of effective immune memory, and 2) severe antigen challenges representing the acute substantial inflammation seen during sepsis, previously documented in studies on B-cell behavior in septic patients. Once calibrated, the BCIABM was used to simulate the B-cell response to repeat antigen stimuli during states of low, chronic background inflammation, implemented as low background levels of IL-6 and TNF-α often seen in patients with conditions such as diabetes, obesity, or advanced age. The levels of immune responsiveness were evaluated and validated by comparing to a Veteran's Administration (VA) patient cohort with COVID-19 infection known to have a higher incidence of such comorbidities. RESULTS The BCIABM was successfully able to reproduce the expected appropriate development of immune memory to mild antigen exposure, as well as the immunoparalysis seen in septic patients. Simulation experiments then revealed significantly decreased B-cell responsiveness as levels of background chronic inflammation increased, reproducing the different COVID-19 infection data seen in a VA population. CONCLUSION The BCIABM proved useful in dynamically representing known mechanisms of B-cell function and reproduced immune memory responses across a range of different antigen exposures and inflammatory statuses. These results elucidate previous studies demonstrating a similar negative correlation between the B-cell response and background inflammation by positing an established and conserved mechanism that explains B-cell dysfunction across a wide range of phenotypic presentations.
Collapse
Affiliation(s)
- Bryan Shin
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - R. Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
4
|
Clark JC, Watson SP, Owen DM. Validation of agent-based models of surface receptor oligomerisation. Trends Pharmacol Sci 2023; 44:643-646. [PMID: 37507263 DOI: 10.1016/j.tips.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Receptor dimerisation and higher order oligomerisation regulates signalling by a wide variety of transmembrane receptors. We discuss how agent-based modelling (ABM) combined with advanced microscopy and structural studies can provide new insights into the regulation of clustering, including spatial considerations, revealing novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Dylan M Owen
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK; Institute of Immunology and Immunotherapy, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Campos Muñiz C, Fernández Perrino FJ. Evolution of the Concepts of Architecture and Supramolecular Dynamics of the Plasma Membrane. MEMBRANES 2023; 13:547. [PMID: 37367751 DOI: 10.3390/membranes13060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
The plasma membrane (PM) has undergone important conceptual changes during the history of scientific research, although it is undoubtedly a cellular organelle that constitutes the first defining characteristic of cellular life. Throughout history, the contributions of countless scientists have been published, each one of them with an enriching contribution to the knowledge of the structure-location and function of each structural component of this organelle, as well as the interaction between these and other structures. The first published contributions on the plasmatic membrane were the transport through it followed by the description of the structure: lipid bilayer, associated proteins, carbohydrates bound to both macromolecules, association with the cytoskeleton and dynamics of these components.. The data obtained experimentally from each researcher were represented in graphic configurations, as a language that facilitates the understanding of cellular structures and processes. This paper presents a review of some of the concepts and models proposed about the plasma membrane, emphasizing the components, the structure, the interaction between them and the dynamics. The work is illustrated with resignified 3D diagrams to visualize the changes that occurred during the history of the study of this organelle. Schemes were redrawn in 3D from the original articles...
Collapse
Affiliation(s)
- Carolina Campos Muñiz
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
6
|
Maqsood Z, Clark JC, Martin EM, Cheung YFH, Morán LA, Watson SET, Pike JA, Di Y, Poulter NS, Slater A, Lange BMH, Nieswandt B, Eble JA, Tomlinson MG, Owen DM, Stegner D, Bridge LJ, Wierling C, Watson SP. Experimental validation of computerised models of clustering of platelet glycoprotein receptors that signal via tandem SH2 domain proteins. PLoS Comput Biol 2022; 18:e1010708. [PMID: 36441766 PMCID: PMC9731471 DOI: 10.1371/journal.pcbi.1010708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
The clustering of platelet glycoprotein receptors with cytosolic YxxL and YxxM motifs, including GPVI, CLEC-2 and PEAR1, triggers activation via phosphorylation of the conserved tyrosine residues and recruitment of the tandem SH2 (Src homology 2) domain effector proteins, Syk and PI 3-kinase. We have modelled the clustering of these receptors with monovalent, divalent and tetravalent soluble ligands and with transmembrane ligands based on the law of mass action using ordinary differential equations and agent-based modelling. The models were experimentally evaluated in platelets and transfected cell lines using monovalent and multivalent ligands, including novel nanobody-based divalent and tetravalent ligands, by fluorescence correlation spectroscopy. Ligand valency, receptor number, receptor dimerisation, receptor phosphorylation and a cytosolic tandem SH2 domain protein act in synergy to drive receptor clustering. Threshold concentrations of a CLEC-2-blocking antibody and Syk inhibitor act in synergy to block platelet aggregation. This offers a strategy for countering the effect of avidity of multivalent ligands and in limiting off-target effects.
Collapse
Affiliation(s)
- Zahra Maqsood
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Alacris Theranostics, GmbH, Berlin, Germany
- Rudolf Virchow Center for Integrative and Translation Bioimaging, University of Würzburg and Institute of Experimental Biomedicine I, University Hospital of Würzburg, Würzburg, Germany
| | - Joanne C. Clark
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Eleyna M. Martin
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yam Fung Hilaire Cheung
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Leibniz-Institut für Analytische Wissenschaften–ISAS—e. V., Dortmund, Germany
- School of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luis A. Morán
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sean E. T. Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy A. Pike
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Ying Di
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translation Bioimaging, University of Würzburg and Institute of Experimental Biomedicine I, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Mike G. Tomlinson
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
- Department of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Dylan M. Owen
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translation Bioimaging, University of Würzburg and Institute of Experimental Biomedicine I, University Hospital of Würzburg, Würzburg, Germany
| | - Lloyd J. Bridge
- Faculty of Environment & Technology, Department of Computer Science and Creative Technologies, University of the West England, Bristol, United Kingdom
| | | | - Steve P. Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
- School of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Saavedra LA, Buena-Maizón H, Barrantes FJ. Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies. Int J Mol Sci 2022; 23:ijms231810435. [PMID: 36142349 PMCID: PMC9499342 DOI: 10.3390/ijms231810435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The cell-surface topography and density of nicotinic acetylcholine receptors (nAChRs) play a key functional role in the synapse. Here we employ in parallel two labeling and two super-resolution microscopy strategies to characterize the distribution of this receptor at the plasma membrane of the mammalian clonal cell line CHO-K1/A5. Cells were interrogated with two targeted techniques (confocal microscopy and stimulated emission depletion (STED) nanoscopy) and single-molecule nanoscopy (stochastic optical reconstruction microscopy, STORM) using the same fluorophore, Alexa Fluor 647, tagged onto either α-bungarotoxin (BTX) or the monoclonal antibody mAb35. Analysis of the topography of nanometer-sized aggregates (“nanoclusters”) was carried out using STORMGraph, a quantitative clustering analysis for single-molecule localization microscopy based on graph theory and community detection, and ASTRICS, an inter-cluster similarity algorithm based on computational geometry. Antibody-induced crosslinking of receptors resulted in nanoclusters with a larger number of receptor molecules and higher densities than those observed in BTX-labeled samples. STORM and STED provided complementary information, STED rendering a direct map of the mesoscale nAChR distribution at distances ~10-times larger than the nanocluster centroid distances measured in STORM samples. By applying photon threshold filtering analysis, we show that it is also possible to detect the mesoscale organization in STORM images.
Collapse
|
8
|
Zhang G, Li H, He R, Lu P. Agent-based modeling and life cycle dynamics of COVID-19-related online collective actions. COMPLEX INTELL SYST 2022; 8:1369-1387. [PMID: 34934610 PMCID: PMC8677927 DOI: 10.1007/s40747-021-00595-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
The outbreak of COVID-19 has greatly threatened global public health and produced social problems, which includes relative online collective actions. Based on the life cycle law, focusing on the life cycle process of COVID-19 online collective actions, we carried out both macro-level analysis (big data mining) and micro-level behaviors (Agent-Based Modeling) on pandemic-related online collective actions. We collected 138 related online events with macro-level big data characteristics, and used Agent-Based Modeling to capture micro-level individual behaviors of netizens. We set two kinds of movable agents, Hots (events) and Netizens (individuals), which behave smartly and autonomously. Based on multiple simulations and parametric traversal, we obtained the optimal parameter solution. Under the optimal solutions, we repeated simulations by ten times, and took the mean values as robust outcomes. Simulation outcomes well match the real big data of life cycle trends, and validity and robustness can be achieved. According to multiple criteria (spans, peaks, ratios, and distributions), the fitness between simulations and real big data has been substantially supported. Therefore, our Agent-Based Modeling well grasps the micro-level mechanisms of real-world individuals (netizens), based on which we can predict individual behaviors of netizens and big data trends of specific online events. Based on our model, it is feasible to model, calculate, and even predict evolutionary dynamics and life cycles trends of online collective actions. It facilitates public administrations and social governance.
Collapse
Affiliation(s)
- Gang Zhang
- School of Economics and Management, Shaanxi University
of Science and Technology, Xi’an, China
| | - Hao Li
- School of Economics and Management, Shaanxi University
of Science and Technology, Xi’an, China
| | - Rong He
- School of Economics and Management, Shaanxi University
of Science and Technology, Xi’an, China
| | - Peng Lu
- School of Economics and Management, Xinjiang University, Xinjiang, China
| |
Collapse
|
9
|
Siokis A, Robert PA, Meyer-Hermann M. Agent-Based Modeling of T Cell Receptor Cooperativity. Int J Mol Sci 2020; 21:ijms21186473. [PMID: 32899840 PMCID: PMC7555007 DOI: 10.3390/ijms21186473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Immunological synapse (IS) formation is a key event during antigen recognition by T cells. Recent experimental evidence suggests that the affinity between T cell receptors (TCRs) and antigen is actively modulated during the early steps of TCR signaling. In this work, we used an agent-based model to study possible mechanisms for affinity modulation during IS formation. We show that, without any specific active mechanism, the observed affinity between receptors and ligands evolves over time and depends on the density of ligands of the antigen peptide presented by major histocompatibility complexes (pMHC) and TCR molecules. A comparison between the presence or absence of TCR–pMHC centrally directed flow due to F-actin coupling suggests that centripetal transport is a potential mechanism for affinity modulation. The model further suggests that the time point of affinity measurement during immune synapse formation is critical. Finally, a mathematical model of F-actin foci formation incorporated in the agent-based model shows that TCR affinity can potentially be actively modulated by positive/negative feedback of the F-actin foci on the TCR-pMHC association rate kon.
Collapse
Affiliation(s)
- Anastasios Siokis
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (A.S.); (P.A.R.)
| | - Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (A.S.); (P.A.R.)
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (A.S.); (P.A.R.)
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence: ; Tel.: +49-531-391-55210
| |
Collapse
|