1
|
Chair M, AlAani H, Lafci Fahrioglu S, Ben Hamda C, Fahrioglu U, Degheidy T. The impact of hydrogen inhalation therapy on blood reactive oxygen species levels: A randomized controlled study. Free Radic Biol Med 2024; 222:601-606. [PMID: 38996821 DOI: 10.1016/j.freeradbiomed.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Reactive Oxygen Species (ROS) play a key role in physiological processes. However, the imbalance between ROS and antioxidants in favor of the former causes oxidative stress linked to numerous pathologies. Due to its unique attributes, including distinguished permeability and selective antioxidant capability, molecular hydrogen (H2) has become an essential therapeutic agent. Hydrogen Inhalation Therapy (HIT) has come to light as a promising strategy to counteract oxidative stress. In this randomized controlled study, we aimed to evaluate the effectiveness of HIT in reducing blood ROS levels. 37 participants with elevated ROS levels (d-ROMs value > 350 U.CARR) were enrolled in the study. Participants were divided into test and control groups. The test group participants received HIT, and then their blood ROS levels were measured immediately post-treatment and after 24 h. Their results were compared to those of the control group participants who did not undergo HIT. The test group demonstrated a significant reduction in blood ROS levels after the treatment. These findings suggested the efficacy of HIT in reducing oxidative stress.
Collapse
Affiliation(s)
- Mohamed Chair
- Agiomix Medical Laboratory, Dubai Science Park, Dubai, United Arab Emirates
| | - Hashem AlAani
- Agiomix Medical Laboratory, Dubai Science Park, Dubai, United Arab Emirates.
| | | | - Cherif Ben Hamda
- Agiomix Medical Laboratory, Dubai Science Park, Dubai, United Arab Emirates
| | - Umut Fahrioglu
- Agiomix Medical Laboratory, Dubai Science Park, Dubai, United Arab Emirates; Precision Health Clinix, Dubai Science Park, Dubai, United Arab Emirates
| | - Tamer Degheidy
- Agiomix Medical Laboratory, Dubai Science Park, Dubai, United Arab Emirates; Precision Health Clinix, Dubai Science Park, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Ri YK, Kim SA, Kye YH, Jong YC, Kang MS, Yu CJ. First-principles study of molecular hydrogen binding to heme in competition with O 2, NO and CO. RSC Adv 2024; 14:16629-16638. [PMID: 38784410 PMCID: PMC11110138 DOI: 10.1039/d4ra02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular hydrogen shows antioxidant activity and distinct efficacy towards vascular diseases, but the understanding of this is not yet satisfactory at the atomic level. In this work, we study the binding properties of H2 to the heme group in relation with other diatomic molecules (DMs), including O2, NO and CO, and their displacement reactions, using first-principles calculations. We carry out molecular modeling of the heme group, using iron-porphyrin with the imidazole ligand, i.e., FePIm, and smaller models of Fe(CnHn+2N2)2NH3 with n = 3 and 1, and of molecular complexes of heme-DM and -H. Through analysis of optimized geometries and energetics, it is found that the order of binding strength of DMs or H to the Fe of heme is NO > O2 > CO > H > H2 for FePIm-based systems, while it is H > O2 > NO > CO > H2 for model-based systems. We calculate the activation energies for displacement reactions of H2 and H by other DMs, revealing that the H2 displacements occur spontaneously while the H displacements require a large amount of energy. Finally, our calculations corroborate that the rate constants increase with increasing temperature according to the Arrhenius relation.
Collapse
Affiliation(s)
- Yun-Kyong Ri
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Song-Ae Kim
- Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Yun-Hyok Kye
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Yu-Chol Jong
- Chair of Chemical Process, Faculty of Chemistry, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Myong-Su Kang
- Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Chol-Jun Yu
- Chair of Computational Materials Design, Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| |
Collapse
|
3
|
Watanabe R, Liu S, Sakaue T, Ikegawa Y, Ohta M, Higaki T, Mogi M, Eguchi M. Amelioration of oxygen-induced retinopathy in neonatal mice with fetal growth restriction. Front Cell Dev Biol 2024; 12:1288212. [PMID: 38434621 PMCID: PMC10904624 DOI: 10.3389/fcell.2024.1288212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction: With the aim of optimizing the balance of maintaining a safe oxygen saturation and reducing the risk of retinopathy of prematurity in human neonates with fetal growth restriction (FGR), the present study investigated the distinct effects of oxygen supplementation on the retinal neovasculature using a murine premature neonatal oxygen-induced retinopathy (OIR) model with or without fetal growth restriction. Methods: For comparison with normal birth-weight neonates, maternal low-protein diet-induced FGR neonates were subjected to fluctuating oxygen levels to generate oxygen-induced retinopathy. The retinal neovasculature was histologically evaluated, and comprehensive transcriptome analysis was conducted. Results: Compared to OIR neonates with normal birth weight, significant amelioration of the neovasculature, as indicated by decreases in the number of branch junctions, vascular distribution, maximal vascular radius and microaneurysm-like tufts, was observed in OIR mice with FGR. The results of retinal RNA-sequencing revealed downregulation of angiogenic factors that trigger pathological retinal neovascularization, such as the mitogen-activated protein kinase pathway and corresponding upstream signaling pathways in OIR mice with FGR. Conclusion: Our findings demonstrated that FGR neonates have a higher capacity for retinal oxygen stress, and the risk of OIR development is attenuated compared to that in mature neonates with normal birth weight.
Collapse
Affiliation(s)
- Ryusuke Watanabe
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
- Department of Pediatrics, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Shuang Liu
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Matsuyama, Ehime, Japan
| | - Yasuhito Ikegawa
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Masaaki Ohta
- Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Takashi Higaki
- Department of Regional Child Health Care, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| |
Collapse
|
4
|
Iwata H, Katoh T, Truong SK, Sato T, Kawashima S, Mimuro S, Nakajima Y. Hydrogen attenuates endothelial glycocalyx damage associated with partial cardiopulmonary bypass in rats. PLoS One 2023; 18:e0295862. [PMID: 38113214 PMCID: PMC10729991 DOI: 10.1371/journal.pone.0295862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Cardiopulmonary bypass (CPB) causes systemic inflammation and endothelial glycocalyx damage. Hydrogen has anti-oxidant and anti-inflammatory properties; therefore, we hypothesized that hydrogen would alleviate endothelial glycocalyx damage caused by CPB. Twenty-eight male Sprague-Dawley rats were randomly divided into four groups (n = 7 per group), as follows: sham, control, 2% hydrogen, and 4% hydrogen. The rats were subjected to 90 minutes of partial CPB followed by 120 minutes of observation. In the hydrogen groups, hydrogen was administered via the ventilator and artificial lung during CPB, and via the ventilator for 60 minutes after CPB. After observation, blood collection, lung extraction, and perfusion fixation were performed, and the heart, lung, and brain endothelial glycocalyx thickness was measured by electron microscopy. The serum syndecan-1 concentration, a glycocalyx component, in the 4% hydrogen group (5.7 ± 4.4 pg/mL) was lower than in the control (19.5 ± 6.6 pg/mL) and 2% hydrogen (19.8 ± 5.0 pg/mL) groups (P < 0.001 for each), but it was not significantly different from the sham group (6.2 ± 4.0 pg/mL, P = 0.999). The endothelial glycocalyces of the heart and lung in the 4% hydrogen group were thicker than in the control group. The 4% hydrogen group had lower inflammatory cytokine concentrations (interleukin-1β and tumor necrosis factor-α) in serum and lung tissue, as well as a lower serum malondialdehyde concentration, than the control group. The 2% hydrogen group showed no significant difference in the serum syndecan-1 concentration compared with the control group. However, non-significant decreases in serum and lung tissue inflammatory cytokine concentrations, as well as in serum malondialdehyde concentration, were observed. Administration of 4% hydrogen via artificial and autologous lungs attenuated endothelial glycocalyx damage caused by partial CPB in rats, which might be mediated by the anti-inflammatory and anti-oxidant properties of hydrogen.
Collapse
Affiliation(s)
- Hiroki Iwata
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takasumi Katoh
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sang Kien Truong
- Department of Anesthesiology and Surgical Critical Care, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Tsunehisa Sato
- Institute for Physiological Sciences, Justus-Liebig-University, Giessen, Germany
| | - Shingo Kawashima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Soichiro Mimuro
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiki Nakajima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Perveen I, Bukhari B, Najeeb M, Nazir S, Faridi TA, Farooq M, Ahmad QUA, Abusalah MAHA, ALjaraedah TY, Alraei WY, Rabaan AA, Singh KKB, Abusalah MAHA. Hydrogen Therapy and Its Future Prospects for Ameliorating COVID-19: Clinical Applications, Efficacy, and Modality. Biomedicines 2023; 11:1892. [PMID: 37509530 PMCID: PMC10377251 DOI: 10.3390/biomedicines11071892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule.
Collapse
Affiliation(s)
- Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Bakhtawar Bukhari
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Mahwish Najeeb
- University Institute of Public Health, The University of Lahore, Lahore 54590, Pakistan
| | - Sumbal Nazir
- School of Zoology, Minhaj University Lahore, Lahore 54770, Pakistan
| | - Tallat Anwar Faridi
- University Institute of Public Health, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Farooq
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Qurat-Ul-Ain Ahmad
- Division of Science and Technology, University of Education, Township Lahore, Lahore 54770, Pakistan
| | - Manal Abdel Haleem A Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Thana' Y ALjaraedah
- Department of Diet Therapy Technology & Dietetics, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Wesal Yousef Alraei
- Department of Diet Therapy Technology & Dietetics, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Mai Abdel Haleem A Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| |
Collapse
|
6
|
Ma T, Yang L, Zhang B, Lv X, Gong F, Yang W. Hydrogen inhalation enhances autophagy via the AMPK/mTOR pathway, thereby attenuating doxorubicin-induced cardiac injury. Int Immunopharmacol 2023; 119:110071. [PMID: 37080067 DOI: 10.1016/j.intimp.2023.110071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
AIMS Doxorubicin is a drug widely used in clinical cancer treatment, but severe cardiotoxicity limits its clinical application. Autophagy disorder is an important factor in the mechanism of doxorubicin-induced cardiac injury. As the smallest molecule in nature, hydrogen has various biological effects such as anti-oxidation, anti-apoptosis and regulation of autophagy. Hydrogen therapy is currently considered to be an emerging therapeutic method, but the effect and mechanism of hydrogen on doxorubicin-induced myocardial injury have not been determined. The purpose of this study was to investigate the protective effect of hydrogen inhalation on doxorubicin-induced chronic myocardial injury and its effect and mechanism on autophagy. METHODS In this study, we established a chronic heart injury model by intraperitoneal injection of doxorubicin in rats for 30 days, accumulating 20 mg/kg. The effect of hydrogen inhalation on the cardiac function in rats was explored by echocardiography, Elisa, and H&E staining. To clarify the influence of autophagy, we detected the expression of LC3 and related autophagy proteins in vivo and in vitro by immunofluorescence and western blot.In order to further explore the mechanism of autophagy, we added pathway inhibitors and used western blot to preliminarily investigate the protective effect of hydrogen inhalation on myocardial injury caused by doxorubicin. RESULTS Hydrogen inhalation can improve doxorubicin-induced cardiac function decline and pathological structural abnormalities in rats. It was confirmed by immunofluorescence that hydrogen treatment could restore the expression of autophagy marker protein LC3 (microtubule-associated protein 1 light chain 3) in cardiomyocytes reduced by doxorubicin, while reducing cardiomyocyte apoptosis. Mechanistically, Western blot results consistently showed that hydrogen treatment up-regulated the ratio of p-AMPK (phosphorylated AMP-dependent protein kinase) to AMPK and down-regulated p-mTOR (phosphorylated mammalian target of rapamycin) and mTOR ratio. CONCLUSIONS These results suggest that hydrogen inhalation can activate autophagy through the AMPK/mTOR pathway and protect against myocardial injury induced by doxorubicin. Hydrogen inhalation therapy may be a potential treatment for doxorubicin-induced myocardial injury.
Collapse
Affiliation(s)
- Tianjiao Ma
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Lei Yang
- Department of Urinary Surgery, The First Hospital of Harbin, Harbin 150010, China
| | - Binmei Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Lv
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 150001, China
| | - Feifei Gong
- Department of Imaging, Chest Hospital of Harbin, 150056, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
7
|
Liang W, Liu Z, Zheng H, Lin A, Fan J, Li J, Wu W, Jie Q. ONOO - -mediated oxidative modification of extracellular matrix aggravates atherosclerosis by affecting biological behaviors of vascular smooth muscle cells. Cell Biol Int 2022; 46:1447-1457. [PMID: 35583088 DOI: 10.1002/cbin.11815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/28/2022] [Accepted: 04/16/2022] [Indexed: 11/06/2022]
Abstract
Atherosclerosis (AS) is a principal contributor to stroke and coronary heart disease in humans characterized by chronic low-grade inflammation. The extracellular matrix (ECM) plays critical roles in regulating the function of arteries. However, the effect of changes in ECM on AS development is rarely studied. In this context, we intend to study the effect of oxidizing agent peroxynitrite (ONOO- )-mediated oxidization of ECM proteins on the biological behaviors of vascular smooth muscle cells (SMCs) and the development of AS. AS mouse models were established, and mouse coronary artery smooth muscle cells (MCASMCs) were cultured in vitro to derive ECM (SMC-ECM), which was obtained by deoxycholate (DOC)-based decellularization. Further, MCASMCs were subjected to the determination of ECM oxidative damage and ECM protein structure. Finally, roles of ONOO- -mediated oxidization of ECM in SMC adhesion and migration and in AS development were explored through Transwell assay, transcriptome sequencing, and gene enrichment analysis. High concentration of ONOO- was found in the serum of AS mice, and ONOO- could stimulate the development of AS. SMC-ECM with intact structure can be obtained in vitro by DOC treatment. Functionally, ONOO- -mediated oxidization destroyed the three-dimensional structure of SMC-ECM proteins, affected SMC adhesion and migration and promoted the absorption efficiency of lipids while reducing the efflux of cholesterol. In addition, the expression of inflammation- and oxidative stress-related genes was significantly increased in ECM subjected to ONOO- -mediated oxidization, thereby contributing to AS progression. ONOO- -mediated oxidative modification of ECM aggravates AS by affecting the biological behavior of SMCs.
Collapse
Affiliation(s)
- Weijie Liang
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Zhen Liu
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Hongyan Zheng
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Aiwen Lin
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Jun Fan
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Jianhao Li
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Wen Wu
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, PR China
| | - Qiang Jie
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| |
Collapse
|
8
|
Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2249749. [PMID: 35340218 PMCID: PMC8956398 DOI: 10.1155/2022/2249749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Ageing is a physiological process of progressive decline in the organism function over time. It affects every organ in the body and is a significant risk for chronic diseases. Molecular hydrogen has therapeutic and preventive effects on various organs. It has antioxidative properties as it directly neutralizes hydroxyl radicals and reduces peroxynitrite level. It also activates Nrf2 and HO-1, which regulate many antioxidant enzymes and proteasomes. Through its antioxidative effect, hydrogen maintains genomic stability, mitigates cellular senescence, and takes part in histone modification, telomere maintenance, and proteostasis. In addition, hydrogen may prevent inflammation and regulate the nutrient-sensing mTOR system, autophagy, apoptosis, and mitochondria, which are all factors related to ageing. Hydrogen can also be used for prevention and treatment of various ageing-related diseases, such as neurodegenerative disorders, cardiovascular disease, pulmonary disease, diabetes, and cancer. This paper reviews the basic research and recent application of hydrogen in order to support hydrogen use in medicine for ageing prevention and ageing-related disease therapy.
Collapse
|
9
|
Tian Y, Zhang Y, Wang Y, Chen Y, Fan W, Zhou J, Qiao J, Wei Y. Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front Physiol 2022; 12:789507. [PMID: 34987419 PMCID: PMC8721893 DOI: 10.3389/fphys.2021.789507] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular hydrogen (H2) is a colorless and odorless gas. Studies have shown that H2 inhalation has the therapeutic effects in many animal studies and clinical trials, and its application is recommended in the novel coronavirus pneumonia treatment guidelines in China recently. H2 has a relatively small molecular mass, which helps it quickly spread and penetrate cell membranes to exert a wide range of biological effects. It may play a role in the treatment and prevention of a variety of acute and chronic inflammatory diseases, such as acute pancreatitis, sepsis, respiratory disease, ischemia reperfusion injury diseases, autoimmunity diseases, etc.. H2 is primarily administered via inhalation, drinking H2-rich water, or injection of H2 saline. It may participate in the anti-inflammatory and antioxidant activity (mitochondrial energy metabolism), immune system regulation, and cell death (apoptosis, autophagy, and pyroptosis) through annihilating excess reactive oxygen species production and modulating nuclear transcription factor. However, the underlying mechanism of H2 has not yet been fully revealed. Owing to its safety and potential efficacy, H2 has a promising potential for clinical use against many diseases. This review will demonstrate the role of H2 in antioxidative, anti-inflammatory, and antiapoptotic effects and its underlying mechanism, particularly in coronavirus disease-2019 (COVID-19), providing strategies for the medical application of H2 for various diseases.
Collapse
Affiliation(s)
- Yan Tian
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Yafang Zhang
- Department of Pediatrics, Taian City Central Hospital, Taian, China
| | - Yu Wang
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China.,Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yunxi Chen
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Jing Qiao
- Department of Pediatrics, Tongji University Affiliated East Hospital, Shanghai, China
| | - Youzhen Wei
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| |
Collapse
|
10
|
Barancik M, Kura B, LeBaron TW, Bolli R, Buday J, Slezak J. Molecular and Cellular Mechanisms Associated with Effects of Molecular Hydrogen in Cardiovascular and Central Nervous Systems. Antioxidants (Basel) 2020; 9:antiox9121281. [PMID: 33333951 PMCID: PMC7765453 DOI: 10.3390/antiox9121281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
The increased production of reactive oxygen species and oxidative stress are important factors contributing to the development of diseases of the cardiovascular and central nervous systems. Molecular hydrogen is recognized as an emerging therapeutic, and its positive effects in the treatment of pathologies have been documented in both experimental and clinical studies. The therapeutic potential of hydrogen is attributed to several major molecular mechanisms. This review focuses on the effects of hydrogen on the cardiovascular and central nervous systems, and summarizes current knowledge about its actions, including the regulation of redox and intracellular signaling, alterations in gene expressions, and modulation of cellular responses (e.g., autophagy, apoptosis, and tissue remodeling). We summarize the functions of hydrogen as a regulator of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated redox signaling and the association of hydrogen with mitochondria as an important target of its therapeutic action. The antioxidant functions of hydrogen are closely associated with protein kinase signaling pathways, and we discuss possible roles of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and Wnt/β-catenin pathways, which are mediated through glycogen synthase kinase 3β and its involvement in the regulation of cellular apoptosis. Additionally, current knowledge about the role of molecular hydrogen in the modulation of autophagy and matrix metalloproteinases-mediated tissue remodeling, which are other responses to cellular stress, is summarized in this review.
Collapse
Affiliation(s)
- Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
| | - Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA;
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 12108 Prague, Czech Republic;
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Correspondence: ; Tel.: +42-19-03-620-181
| |
Collapse
|