1
|
Wu C, Ren Y, Li Y, Cui Y, Zhang L, Zhang P, Zhang X, Kan S, Zhang C, Xiong Y. Identification and Experimental Validation of NETosis-Mediated Abdominal Aortic Aneurysm Gene Signature Using Multi-omics, Machine Learning, and Mendelian Randomization. J Chem Inf Model 2025; 65:3771-3788. [PMID: 40105795 DOI: 10.1021/acs.jcim.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disorder with limited therapeutic options. Neutrophil extracellular traps (NETs) are formed by a process known as "NETosis" that has been implicated in AAA pathogenesis, yet the roles and prognostic significance of NET-related genes in AAA remain poorly understood. This study aimed to identify key AAA- and NET-related genes (AAA-NETs-RGs), elucidate their potential mechanisms in contributing to AAA, and explore potential therapeutic compounds for AAA therapy. Through bioinformatics analysis of multiomics and machine learning, we identified six AAA-NETs-RGs: DUSP26, FCN1, MTHFD2, GPRC5C, SEMA4A, and CCR7, which exhibited strong diagnostic potential for predicting AAA progression, were significantly enriched in pathways related to cytokine-cytokine receptor interaction and chemokine signaling. Immune infiltration analysis revealed a causal association between AAA-NETs-RGs and immune cell infiltration. Cell-cell communication analysis indicated that AAA-NETs-RGs predominantly function in smooth muscle cells, B cells, T cells, and NK cells, primarily through cytokine and chemokine signaling. Gene profiling revealed that CCR7 and MTHFD2 exhibited the most significant upregulation in AAA patients compared to non-AAA controls, as well as in in vitro AAA models. Notably, genetic depletion of CCR7 and MTHFD2 strongly inhibited Ang II-induced phenotypic switching, functional impairment, and senescence in vascular smooth muscle cells (VSMCs). Based on AAA-NETs-RGs, molecular docking analysis combined with the Connectivity Map (CMap) database identified mirdametinib as a potential therapeutic agent for AAA. Mirdametinib effectively alleviated Ang II-induced phenotypic switching, biological dysfunction, and senescence. These findings provide valuable insights into understanding the pathophysiology of AAA and highlight promising therapeutic strategies targeting AAA-NETs-RGs.
Collapse
Affiliation(s)
- Chengsong Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Yue Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Liyao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Pan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Xuejiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Shangguang Kan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
| | - Chan Zhang
- Department of Blood Transfusion, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 710069 Xi'an, Shaanxi, P. R. China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, P. R. China
| |
Collapse
|
2
|
Zhang K, Liu Y, Mao A, Li C, Geng L, Kan H. Proteome-Wide Mendelian Randomization Identifies Therapeutic Targets for Abdominal Aortic Aneurysm. J Am Heart Assoc 2025; 14:e038193. [PMID: 39895541 PMCID: PMC12074732 DOI: 10.1161/jaha.124.038193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The proteome is a key source of therapeutic targets. We conducted a comprehensive Mendelian randomization analysis across the proteome to identify potential protein markers and therapeutic targets for abdominal aortic aneurysm (AAA). METHODS AND RESULTS Our study used plasma proteomics data from the UK Biobank, comprising 2923 proteins from 54 219 individuals, and from deCODE Genetics, which measured 4907 proteins across 35 559 individuals. Significant proteomic quantitative trait loci were used as instruments for Mendelian randomization. Genetic associations with AAA were sourced from the AAAgen consortium, a large-scale genome-wide association study meta-analysis involving 37 214 cases and 1 086 107 controls, and the FinnGen study, which included 3869 cases and 381 977 controls. Sequential analyses of colocalization and summary-data-based Mendelian randomization were performed to verify the causal roles of candidate proteins. Additionally, single-cell expression analysis, protein-protein interaction network analysis, pathway enrichment analysis, and druggability assessments were conducted to identify cell types with enriched expression and prioritize potential therapeutic targets. The proteome-wide Mendelian randomization analysis identified 34 proteins associated with AAA risk. Among them, 2 proteins, COL6A3 and PRKD2, were highlighted by colocalization analysis, summary-data-based Mendelian randomization, and the heterogeneity in an independent instrument test, providing the most convincing evidence. These protein-coding genes are primarily expressed in macrophages, smooth muscle cells, and mast cells within abdominal aortic aneurysm tissue. Several causal proteins are involved in pathways regulating lipid metabolism, immune responses, and extracellular matrix organization. Nine proteins have already been targeted for drug development in diabetes and other cardiovascular diseases, presenting opportunities for repurposing as AAA therapeutic targets. CONCLUSIONS This study identifies causal proteins for AAA, enhancing our understanding of its molecular cause and advancing the development of therapeutics.
Collapse
Affiliation(s)
- Ka Zhang
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yuan Liu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Aiqin Mao
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Changzhu Li
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Li Geng
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Hao Kan
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
3
|
Shanmuganathan G, Agrawal DK. Diabetes and Abdominal Aortic Aneurysm: Is the Protective Effect on AAA Due to Antidiabetic Medications Alone, Due to the Disease Alone, or Both? ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:104-113. [PMID: 38846325 PMCID: PMC11156236 DOI: 10.26502/aimr.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Diabetes is a metabolic disease that may result in multiple microvascular and macrovascular diseases. Interestingly, many studies have demonstrated the inverse relationship between diabetes and the development and expansion of abdominal aortic aneurysm (AAA). One hypothesis is that the aortic wall stiffness resulting from hyperglycemia and advanced glycation end products could delay the development and growth of AAA. Other studies have proposed that the concurrent use of antidiabetic medications which promote anti-inflammatory cytokines while hindering pro-inflammatory cytokines may potentially be the reason for this protective effect of diabetes on AAA. Contrastingly, the presence of diabetes has been found to have a negative effect on the outcome of AAA following its repair which may be due to elevated blood glucose negatively affecting the healing process. The current literature has also demonstrated the negative impact of the use of fluoroquinolones on AAA. This comprehensive review critically reviewed and summarized the role of diabetes, anti-diabetes medications and fluoroquinolones on AAA, and on the effect of diabetes and certain anti-diabetes medications on outcomes following its repair.
Collapse
Affiliation(s)
- Gaithrri Shanmuganathan
- Department of Translational Research College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona, California 91766
| | - Devendra K Agrawal
- Department of Translational Research College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona, California 91766
| |
Collapse
|
4
|
Identification of Novel Plasma Biomarkers for Abdominal Aortic Aneurysm by Protein Array Analysis. Biomolecules 2022; 12:biom12121853. [PMID: 36551281 PMCID: PMC9775419 DOI: 10.3390/biom12121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially life-threatening disease that is common in the aging population. Currently, there are no approved diagnostic biomarkers or therapeutic drugs for AAA. We aimed to identify novel plasma biomarkers or potential therapeutic targets for AAA using a high-throughput protein array-based method. Proteomics expression profiles were investigated in plasma from AAA patients and healthy controls (HC) using 440-cytokine protein array analysis. Several promising biomarkers were further validated in independent cohorts using enzyme-linked immunosorbent assay (ELISA). Thirty-nine differentially expressed plasma proteins were identified between AAA and HC. Legumain (LGMN) was significantly higher in AAA patients and was validated in another large cohort. Additionally, "AAA without diabetes" (AAN) patients and "AAA complicated with type 2 diabetes mellitus" (AAM) patients had different cytokine expression patterns in their plasma, and nine plasma proteins were differentially expressed among the AAN, AAM, and HC subjects. Delta-like protein 1 (DLL1), receptor tyrosine-protein kinase erbB-3 (ERBB3), and dipeptidyl peptidase 4 (DPPIV) were significantly higher in AAM than in AAN. This study identified several promising plasma biomarkers of AAA. Their role as therapeutic targets for AAA warrants further investigation.
Collapse
|
5
|
Stilo F, Catanese V, Nenna A, Montelione N, Codispoti FA, Verghi E, Gabellini T, Jawabra M, Chello M, Spinelli F. Biomarkers in EndoVascular Aneurysm Repair (EVAR) and Abdominal Aortic Aneurysm: Pathophysiology and Clinical Implications. Diagnostics (Basel) 2022; 12:diagnostics12010183. [PMID: 35054350 PMCID: PMC8774611 DOI: 10.3390/diagnostics12010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating biomarkers have been recently investigated among patients undergoing endovascular aortic aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Considering the plethora of small descriptive studies reporting potential associations between biomarkers and clinical outcomes, this review aims to summarize the current literature considering both the treated disease (post EVAR) and the untreated disease (AAA before EVAR). All studies describing outcomes of tissue biomarkers in patients undergoing EVAR and in patients with AAA were included, and references were checked for additional sources. In the EVAR scenario, circulating interleukin-6 (IL-6) is a marker of inflammatory reaction which might predict postoperative morbidity; cystatin C is a promising early marker of post-procedural acute kidney injury; plasma matrix metalloproteinase-9 (MMP-9) concentration after 3 months from EVAR might help in detecting post-procedural endoleak. This review also summarizes the current gaps in knowledge and future direction of this field of research. Among markers used in patients with AAA, galectin and granzyme appear to be promising and should be carefully investigated even in the EVAR setting. Larger prospective trials are required to establish and evaluate prognostic models with highest values with these markers.
Collapse
Affiliation(s)
- Francesco Stilo
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Vincenzo Catanese
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
- Correspondence: or
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Nunzio Montelione
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Alberto Codispoti
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Emanuele Verghi
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Mohamad Jawabra
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Massimo Chello
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Spinelli
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| |
Collapse
|
6
|
Huang Z, Su H, Zhang T, Li Y. Double-edged sword of diabetes mellitus for abdominal aortic aneurysm. Front Endocrinol (Lausanne) 2022; 13:1095608. [PMID: 36589814 PMCID: PMC9800781 DOI: 10.3389/fendo.2022.1095608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) has been proved to contribute to multiple comorbidities that are risk factors for abdominal aortic aneurysm (AAA). Remarkably, evidences from epidemiologic studies have demonstrated a negative association between the two disease states. On the other hand, hyperglycemic state was linked to post-operative morbidities following AAA repair. This review aims to provide a thorough picture on the double-edged nature of DM and major hypoglycemic medications on prevalence, growth rate and rupture of AAA, as well as DM-associated prognosis post AAA repair. METHODS We performed a comprehensive search in electronic databases to look for literatures demonstrating the association between DM and AAA. The primary focus of the literature search was on the impact of DM on the morbidity, enlargement and rupture rate, as well as post-operative complications of AAA. The role of antidiabetic medications was also explored. RESULTS Retrospective epidemiological studies and large database researches associated the presence of DM with decreased prevalence, slower expansion and limited rupture rate of AAA. Major hypoglycemic drugs exert similar protective effect as DM against AAA by targeting pathological hallmarks involved in AAA formation and progression, which were demonstrated predominantly by animal studies. Nevertheless, presence of DM or postoperative hyperglycemia was linked to poorer short-term and long-term prognosis, primarily due to greater risk of infection, longer duration of hospital stays and death. CONCLUSION While DM is a positive factor in the formation and progression of AAA, it is also associated with higher risk of negative outcomes following AAA repair. Concomitant use of antidiabetic medications may contribute to the protective mechanism of DM in AAA, but further studies are still warranted to explore their role following AAA repair.
Collapse
Affiliation(s)
- Zijia Huang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiling Su
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiejun Zhang, ; Yuwen Li,
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiejun Zhang, ; Yuwen Li,
| |
Collapse
|
7
|
Lorenzen US, Eiberg JP, Hultgren R, Wanhainen A, Langenskiöld M, Sillesen HH, Bredahl KK. The Short-term Predictive Value of Vessel Wall Stiffness on Abdominal Aortic Aneurysm Growth. Ann Vasc Surg 2021; 77:187-194. [PMID: 34437978 DOI: 10.1016/j.avsg.2021.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) surveillance programs are currently based solely on AAA diameter. The diameter criterion alone, however, seems inadequate as small AAAs comprise 5-10 % of ruptured AAAs as well as some large AAAs never rupture. Aneurysm wall stiffness has been suggested to predict rupture and growth; this study aimed to investigate the prognostic value of AAA vessel wall stiffness for growth on prospectively collected data. METHODS Analysis was based on data from a randomised, placebo-controlled, multicentre trial investigating mast-cell-inhibitors to halt aneurysm growth (the AORTA trial). Systolic and diastolic AAA diameter was determined in 326 patients using electrocardiogram-gated ultrasound (US). Stiffness was calculated at baseline and after 1 year. RESULTS Maximum AAA diameter increased from 44.1 mm to 46.5 mm during the study period. Aneurysm growth after 1 year was not predicted by baseline stiffness (-0.003 mm/U; 95 % CI: -0.007 to 0.001 mm/U; P = 0.15). Throughout the study period, stiffness remained unchanged (8.3 U; 95 % CI: -2.5 to 19.1 U; P = 0.13) and without significant correlation to aneurysm growth (R: 0.053; P = 0.38). CONCLUSIONS Following a rigorous US protocol, this study could not confirm AAA vessel wall stiffness as a predictor of aneurysm growth in a 1-year follow-up design. The need for new and subtle methods to complement diameter for improved AAA risk assessment is warranted.
Collapse
Affiliation(s)
| | - Jonas P Eiberg
- Department of Vascular Surgery, Rigshospitalet, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden; Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Sweden
| | - Marcus Langenskiöld
- Department of Molecular and Clinical Medicine, University of Gothenurg, Sweden
| | - Henrik H Sillesen
- Department of Vascular Surgery, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim K Bredahl
- Department of Vascular Surgery, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ngetich E, Lapolla P, Chandrashekar A, Handa A, Lee R. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med 2021; 27:77-87. [PMID: 34392748 PMCID: PMC8808362 DOI: 10.1177/1358863x211034574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an important vascular disease carrying significant mortality implications due to the risk of aneurysm rupture. Current management relies exclusively on surgical repair as there is no effective medical therapy. A key element of AAA pathogenesis is the chronic inflammation mediated by inflammatory cells releasing proteases, including the enzyme dipeptidyl peptidase IV (DPP-IV). This review sought to recapitulate available evidence on the involvement of DPP-IV in AAA development. Further, we assessed the experimental use of currently available DPP-IV inhibitors for AAA management in murine models. Embase, Medline, PubMed, and Web of Science databases were utilised to access the relevant studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A narrative synthesis approach was used. Sixty-four studies were identified from the searched databases; a final 11 were included in the analysis. DPP-IV was reported to be significantly increased in both AAA tissue and plasma of patients and correlated with AAA growth. DPP-IV inhibitors (sitagliptin, vildagliptin, alogliptin, and teneligliptin) were all shown to attenuate AAA formation in murine models by reducing monocyte differentiation, the release of reactive oxygen species (ROS), and metalloproteinases (MMP-2 and MMP-9). DPP-IV seems to play a role in AAA pathogenesis by propagating the inflammatory microenvironment. This is supported by observations of decreased AAA formation and reduction in macrophage infiltration, ROS, matrix MMPs, and interleukins following the use of DPP-IV inhibitors in murine models. There is an existing translational gap from preclinical observations to clinical trials in this important and novel mechanism of AAA pathogenesis. This prior literature highlights the need for further research on molecular targets involved in AAA formation.
Collapse
Affiliation(s)
- Elisha Ngetich
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
9
|
Lindquist Liljeqvist M, Hultgren R, Bergman O, Villard C, Kronqvist M, Eriksson P, Roy J. Tunica-Specific Transcriptome of Abdominal Aortic Aneurysm and the Effect of Intraluminal Thrombus, Smoking, and Diameter Growth Rate. Arterioscler Thromb Vasc Biol 2020; 40:2700-2713. [PMID: 32907367 DOI: 10.1161/atvbaha.120.314264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE There is no medical treatment to prevent abdominal aortic aneurysm (AAA) growth and rupture, both of which are linked to smoking. Our objective was to map the tunica-specific pathophysiology of AAA with consideration of the intraluminal thrombus, age, and sex, and to subsequently identify which mechanisms were linked to smoking and diameter growth rate. Approach and Results: Microarray analyses were performed on 246 samples from 76 AAA patients and 13 controls. In media and adventitia, there were 5889 and 2701 differentially expressed genes, respectively. Gene sets related to adaptive and innate immunity were upregulated in both tunicas. Media-specific gene sets included increased matrix disassembly and angiogenesis, as well as decreased muscle cell development, contraction, and differentiation. Genes implicated in previous genome-wide association studies were dysregulated in media. The intraluminal thrombus had a pro-proteolytic and proinflammatory effect on the underlying media. Active smoking resulted in increased inflammation, oxidative stress, and angiogenesis in all tissues and enriched lipid metabolism in adventitia. Processes enriched with active smoking in control aortas overlapped to a high extent with those differentially expressed between AAAs and controls. The AAA diameter growth rate (n=24) correlated with T- and B-cell expression in media, as well as lipid-related processes in the adventitia. CONCLUSIONS This tunica-specific analysis of gene expression in a large study enabled the detection of features not previously described in AAA disease. Smoking was associated with increased expression of aneurysm-related processes, of which adaptive immunity and lipid metabolism correlated with growth rate.
Collapse
Affiliation(s)
- Moritz Lindquist Liljeqvist
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (R.H., J.R.)
| | - Otto Bergman
- Department of Medicine (O.B., P.E.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Villard
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine (O.B., P.E.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joy Roy
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (R.H., J.R.)
| |
Collapse
|