1
|
Tóth K, Gaál Z. Impact of Tyrosine Kinase Inhibitors on the Expression Pattern of Epigenetic Regulators. Cancers (Basel) 2025; 17:1282. [PMID: 40282457 PMCID: PMC12025482 DOI: 10.3390/cancers17081282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Advances in molecular genetic diagnostics and emerging opportunities for targeted treatment have opened new horizons in precision oncology. Tyrosine kinase inhibitors (TKI) are the subgroup of these agents with which the most clinical experience has been gathered so far. However, little data is available on the effect of TKI agents on the expression levels of molecules responsible for epigenetic regulation. Methods: In this study, we investigated the effect of in vitro and in vivo treatment with tyrosine kinase inhibitor agents on the expression of epigenetic regulators in hematological malignancies and solid tumors, based on data included in the functional genomics repository Gene Expression Omnibus. Results: Statistical analysis of datasets and series of gene expression patterns revealed numerous significant changes in the levels of epigenetic writers, erasers, microRNAs and members of chromatin-remodeling complexes following TKI treatment. Previously published data about the role of these epigenetic modifiers in malignant diseases has also been summarized. Conclusions: Our results may contribute to the establishment of novel treatment strategies aiming at the combinatorial administration of TKI and epidrugs in cancer, leading to less toxic therapy with further improved results.
Collapse
Affiliation(s)
| | - Zsuzsanna Gaál
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Chen Y, Liu H, Wang C, Chen W, Li L, Wu J, Wang G, Ling GS, Fu R. The histone demethylase JMJD1C regulates CPS1 expression and promotes the proliferation of paroxysmal nocturnal haemoglobinuria clones through cell metabolic reprogramming. Br J Haematol 2024; 204:2468-2479. [PMID: 38650379 DOI: 10.1111/bjh.19477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) is a disorder resulting from erythrocyte membrane deficiencies caused by PIG-A gene mutations. While current treatments alleviate symptoms, they fail to address the underlying cause of the disease-the pathogenic PNH clones. In this study, we found that the expression of carbamoyl phosphate synthetase 1 (CPS1) was downregulated in PNH clones, and the level of CPS1 was negatively correlated with the proportion of PNH clones. Using PIG-A knockout K562 (K562 KO) cells, we demonstrated that CPS1 knockdown increased cell proliferation and altered cell metabolism, suggesting that CPS1 participates in PNH clonal proliferation through metabolic reprogramming. Furthermore, we observed an increase in the expression levels of the histone demethylase JMJD1C in PNH clones, and JMJD1C expression was negatively correlated with CPS1 expression. Knocking down JMJD1C in K562 KO cells upregulated CPS1 and H3K36me3 expression, decreased cell proliferation and increased cell apoptosis. Chromatin immunoprecipitation analysis further demonstrated that H3K36me3 regulated CPS1 expression. Finally, we demonstrated that histone demethylase inhibitor JIB-04 can suppressed K562 KO cell proliferation and reduced the proportion of PNH clones in PNH mice. In conclusion, aberrant regulation of the JMJD1C-H3K36me3-CPS1 axis contributes to PNH clonal proliferation. Targeting JMJD1C with a specific inhibitor unveils a potential strategy for treating PNH patients.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Chaomeng Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Weixin Chen
- LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liyan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Junshu Wu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Guanrou Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Guang Sheng Ling
- LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| |
Collapse
|
3
|
The histone demethylase JMJD2C constitutes a novel NFE2 target gene that is required for the survival of JAK2 V617F mutated cells. Leukemia 2023; 37:919-923. [PMID: 36709354 PMCID: PMC10079541 DOI: 10.1038/s41375-023-01826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The transcription factor NFE2 is overexpressed in most patients with myeloproliferative neoplasms (MPN). Moreover, mutations in NFE2, found in a subset of MPN patients, strongly predispose for transformation to acute leukemia. Transgenic mice overexpressing NFE2 as well as mice harboring NFE2 mutations display an MPN phenotype and spontaneously develop leukemia. However, the molecular mechanisms effecting NFE2-driven leukemic transformation remain incompletely understood. Here we show that the pro-leukemic histone demethylase JMJD2C constitutes a novel NFE2 target gene. JMJD2C expression is elevated in MPN patients as well as in NFE2 transgenic mice. Moreover, we show that loss of JMJD2C selectively impairs proliferation of JAK2V617F mutated cells. Our data suggest that JMJD2C represents a promising drug target in MPN and provide a rationale for further investigation in preclinical and clinical settings.
Collapse
|
4
|
Gou P, Zhang W, Giraudier S. Insights into the Potential Mechanisms of JAK2V617F Somatic Mutation Contributing Distinct Phenotypes in Myeloproliferative Neoplasms. Int J Mol Sci 2022; 23:ijms23031013. [PMID: 35162937 PMCID: PMC8835324 DOI: 10.3390/ijms23031013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a group of blood cancers in which the bone marrow (BM) produces an overabundance of erythrocyte, white blood cells, or platelets. Philadelphia chromosome-negative MPN has three subtypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The over proliferation of blood cells is often associated with somatic mutations, such as JAK2, CALR, and MPL. JAK2V617F is present in 95% of PV and 50–60% of ET and PMF. Based on current molecular dynamics simulations of full JAK2 and the crystal structure of individual domains, it suggests that JAK2 maintains basal activity through self-inhibition, whereas other domains and linkers directly/indirectly enhance this self-inhibited state. Nevertheless, the JAK2V617F mutation is not the only determinant of MPN phenotype, as many normal individuals carry the JAK2V617F mutation without a disease phenotype. Here we review the major MPN phenotypes, JAK-STAT pathways, and mechanisms of development based on structural biology, while also describing the impact of other contributing factors such as gene mutation allele burden, JAK-STAT-related signaling pathways, epigenetic modifications, immune responses, and lifestyle on different MPN phenotypes. The cross-linking of these elements constitutes a complex network of interactions and generates differences in individual and cellular contexts that determine the phenotypic development of MPN.
Collapse
Affiliation(s)
- Panhong Gou
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| | - Wenchao Zhang
- BFA, UMR 8251, CNRS, Université de Paris, 75013 Paris, France;
| | - Stephane Giraudier
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| |
Collapse
|
5
|
Staehle HF, Pahl HL, Jutzi JS. The Cross Marks the Spot: The Emerging Role of JmjC Domain-Containing Proteins in Myeloid Malignancies. Biomolecules 2021; 11:biom11121911. [PMID: 34944554 PMCID: PMC8699298 DOI: 10.3390/biom11121911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases (KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering them attractive targets for drug interventions. In this review, we summarize the known functions of Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in understanding the context-dependent mechanisms of these proteins and explore potential future pharmacological targeting.
Collapse
Affiliation(s)
- Hans Felix Staehle
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Heike Luise Pahl
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Jonas Samuel Jutzi
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Correspondence:
| |
Collapse
|
6
|
Toraman B, Bilginer SÇ, Hesapçıoğlu ST, Göker Z, Soykam HO, Ergüner B, Dinçer T, Yıldız G, Ünsal S, Kasap BK, Kandil S, Kalay E. Finding underlying genetic mechanisms of two patients with autism spectrum disorder carrying familial apparently balanced chromosomal translocations. J Gene Med 2021; 23:e3322. [PMID: 33591602 DOI: 10.1002/jgm.3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Genetic etiologies of autism spectrum disorders (ASD) are complex, and the genetic factors identified so far are very diverse. In complex genetic diseases such as ASD, de novo or inherited chromosomal abnormalities are valuable findings for researchers with respect to identifying the underlying genetic risk factors. With gene mapping studies on these chromosomal abnormalities, dozens of genes have been associated with ASD and other neurodevelopmental genetic diseases. In the present study, we aimed to idenitfy the causative genetic factors in patients with ASD who have an apparently balanced chromosomal translocation in their karyotypes. METHODS For mapping the broken genes as a result of chromosomal translocations, we performed whole genome DNA sequencing. Chromosomal breakpoints and large DNA copy number variations (CNV) were determined after genome alignment. Identified CNVs and single nucleotide variations (SNV) were evaluated with VCF-BED intersect and Gemini tools, respectively. A targeted resequencing approach was performed on the JMJD1C gene in all of the ASD cohorts (220 patients). For molecular modeling, we used a homology modeling approach via the SWISS-MODEL. RESULTS We found that there was no contribution of the broken genes or regulator DNA sequences to ASD, whereas the SNVs on the JMJD1C, CNKSR2 and DDX11 genes were the most convincing genetic risk factors for underlying ASD phenotypes. CONCLUSIONS Genetic etiologies of ASD should be analyzed comprehensively by taking into account of the all chromosomal structural abnormalities and de novo or inherited CNV/SNVs with all possible inheritance patterns.
Collapse
Affiliation(s)
- Bayram Toraman
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Samiye Çilem Bilginer
- Faculty of Medicine Child and Adolescent Psychiatry Department, Karadeniz Technical University, Trabzon, Turkey
| | - Selma Tural Hesapçıoğlu
- Child and Adolescent Psychiatry Department, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Göker
- Ministry of Health Ankara City Hospital, Child-Adolescent and Mental Health, Cankaya, Ankara, Turkey
| | - Hüseyin Okan Soykam
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, İstanbul, Turkey
| | - Bekir Ergüner
- Sabanci University Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bio engineering, Istanbul, Turkey
| | - Tuba Dinçer
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Gökhan Yıldız
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Serbülent Ünsal
- Graduate School of Health Science, Biostatistics and Medical Informatics Department, PhD Candidate, Karadeniz Technical University, Trabzon, Turkey
| | - Burak Kaan Kasap
- Graduate School of Health Science, Medical Biology Department, PhD Candidate, Karadeniz Technical University, Trabzon, Turkey
| | - Sema Kandil
- Faculty of Medicine Child and Adolescent Psychiatry Department, Karadeniz Technical University, Trabzon, Turkey
| | - Ersan Kalay
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|