1
|
Reingold V, Faigenboim A, Matveev S, Haviv S, Belausov E, Vilcinskas A, Ment D. Transcriptional reprogramming in the entomopathogenic fungus Metarhizium brunneum and its aphid host Myzus persicae during the switch between saprophytic and parasitic lifestyles. BMC Genomics 2024; 25:917. [PMID: 39358701 PMCID: PMC11446092 DOI: 10.1186/s12864-024-10824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The fungus Metarhizium brunneum has evolved a remarkable ability to switch between different lifestyles. It develops as a saprophyte, an endophyte establishing mutualistic relationships with plants, or a parasite, enabling its use for the control of insect pests such as the aphid Myzus persicae. We tested our hypothesis that switches between lifestyles must be accompanied by fundamental transcriptional reprogramming, reflecting adaptations to different environmental settings. RESULTS We combined high throughput RNA sequencing of M. brunneum in vitro and at different stages of pathogenesis to validate the modulation of genes in the fungus and its host during the course of infection. In agreement with our hypothesis, we observed transcriptional reprogramming in M. brunneum following conidial attachment, germination on the cuticle, and early-stage growth within the host. This involved the upregulation of genes encoding degrading enzymes and gene clusters involved in synthesis of secondary metabolites that act as virulence factors. The transcriptional response of the aphid host included the upregulation of genes potentially involved in antifungal activity, but antifungal peptides were not induced. We also observed the induction of a host flightin gene, which may be involved in wing formation and flight muscle development. CONCLUSIONS The switch from saprophytic to parasitic development in M. brunneum is accompanied by fundamental transcriptional reprogramming during the course of the infection. The aphid host responds to fungal infection with its own transcriptional reprogramming, reflecting its inability to express antifungal peptides but featuring the induction of genes involved in winged morphs that may enable offspring to avoid the contaminated environment.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Sabrina Haviv
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Eduard Belausov
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig Universität Giessen, Giessen, 35392, Germany
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, 35392, Germany
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
2
|
Collinson NP, Giri K, Kaur J, Spangenberg G, Malipatil M, Mann RC, Valenzuela I. Evaluating the Effects of Epichloë Fungal Endophytes of Perennial Ryegrass on the Feeding Behaviour and Life History of Rhopalosiphum padi. INSECTS 2024; 15:744. [PMID: 39452320 PMCID: PMC11508369 DOI: 10.3390/insects15100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is an economically significant pest of pasture grasses, the latter being capable of hosting several fungal endophyte-perennial ryegrass symbiota rich in alkaloids and toxic to vertebrates and invertebrates. Measuring aphid feeding behaviour can provide insights into the effectiveness and mode of action of different fungal endophytes. This study investigated the effects of different Epichloë-perennial ryegrass symbiota on the feeding behaviour of R. padi using the electrical penetration graph technique while also assessing the aphid life history. In most cases, endophytes had significant feeding deterrence and paired fecundity and mortality effects. But, in some instances, endophytes with the highest aphid mortality did not significantly deter feeding, suggesting a more complicated scenario of interactions between the relative concentration of metabolites, e.g., host plant defence response metabolites and alkaloids, and/or physical changes to leaf morphology. Overall, this study sheds light on the mode of action of Epichloë endophytes against aphids and highlights the importance of Epichloë-perennial ryegrass symbiota in the management of insect pests such as aphids in pasture-based grazing systems.
Collapse
Affiliation(s)
- Nicholas Paul Collinson
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
- Department of Science, Health and Engineering, School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Khageswor Giri
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
| | - Jatinder Kaur
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
- Department of Science, Health and Engineering, School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German Spangenberg
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266000, China;
| | - Mallik Malipatil
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
- Department of Science, Health and Engineering, School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ross Cameron Mann
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
| | - Isabel Valenzuela
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
| |
Collapse
|
3
|
Fingu-Mabola JC, Bawin T, Francis F. Direct and Indirect Effect via Endophytism of Entomopathogenic Fungi on the Fitness of Myzus persicae and Its Ability to Spread PLRV on Tobacco. INSECTS 2021; 12:insects12020089. [PMID: 33494162 PMCID: PMC7909804 DOI: 10.3390/insects12020089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Aphids are major crop pests that are feeding on plant sap and transmitting plant viruses, thus inducing high yield losses worldwide. As chemical pesticides are decreasingly used in plant protection, fungi that cause disease to insects (entomopathogenic fungi) are one of the promising alternatives. They are commonly applied by spraying plants to protect them against herbivores. When applied, some fungi penetrate and live within plant tissues, thus helping to internally protect from insect attacks and other plant diseases. The aim of our study was to assess the effects of entomopathogenic fungi (EPF) applied firstly by contact after insect direct spraying, secondly by endophytic plant inoculation, and thirdly by associated both methods assessing the green peach aphid performances. The impact of the presence of endophytic entomopathogenic fungi (EEPF) in plant tissues on virus transmission by aphids was also considered. We found that the EPF Beauveria bassiana killed the green peach aphid and reduced its fecundity regardless of the application method. On fungal-inoculated plants, there was also a high mortality of aphid nymphs and infection by the potato leafroll virus (PLRV) was delayed by about a week with the EEPF treatment compared to fungal-free plants. This study showed that spraying plant leaves with EPF not only has a direct insecticidal effect against insects but could also have beneficial side effects for the plant against viruses. Abstract Aphids are major crop pests that transmit more than half of all insect-vectored plant viruses responsible for high yield losses worldwide. Entomopathogenic fungi (EPF) are biological control agents mainly used by foliar application to control herbivores, including sap-sucking pests such as aphids. Their ability to colonize plant tissues and to interact with diverse plant pathogenic microorganisms have been reported. In our study, we evaluated the effectiveness of Beauveria bassiana ((Balsamo-Crivelli) Vuillemin) directly applied by contact or/and indirectly via endophytism in tobacco plants (Nicotiana tabacum L.) against the virus vector Myzus persicae (Sulzer) carrying the Potato leafroll virus (PLRV) or not. We found that both contact treatment and endophytic colonization of leaves significantly increased aphid mortality and decreased the fecundity rate when compared to control plants. In addition, on fungal-colonized leaves, viruliferous aphids were more negatively impacted than virus-free ones and nymph mortality was significantly higher than on fungal-free plants. Furthermore, we assessed PLRV transmission by M. persicae on tobacco plants inoculated with either B. bassiana or Metarhizium acridum ((Driver and Milner) JF Bischoff, Rehner, and Humber) as source or/and recipient plants. Myzus persicae was found to acquire and transmit PLRV regardless of the treatment. Nevertheless, the infection rate of endophytically colonized plants was lower at a seven-day incubation period and had increased to almost 100% after fifteen days. These results suggest that B. bassiana is effective against aphids, both by contact and via endophytism, and both B. bassiana and M. acridum delayed PLRV infection in tobacco.
Collapse
Affiliation(s)
- Junior Corneille Fingu-Mabola
- Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Correspondence:
| | - Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 2019 Tromsø, Norway;
| | - Frédéric Francis
- Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|