1
|
Ma Y, Guo T, Ding J, Dong Z, Ren Y, Lu C, Zhao Y, Guo X, Cao G, Li B, Gao P. RNA-seq analysis of small intestine transcriptional changes induced by starvation stress in piglets. Anim Biotechnol 2024; 35:2295931. [PMID: 38147885 DOI: 10.1080/10495398.2023.2295931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Piglets may experience a variety of stress injuries, but the molecular regulatory mechanisms underlying these injuries are not well understood. In this study, we analysed the ileum of Large White (LW) and Mashen (MS) piglets at different times of starvation using chemical staining and transcriptome analysis. The intestinal barrier of piglets was damaged after starvation stress, but the intestinal antistress ability of MS piglets was stronger than LW piglets. A total of 8021 differentially expressed genes (DEGs) were identified in two breeds. Interestingly, the immune capacity (CHUK, TLR3) of MS piglets increased significantly after short-term starvation stress, while energy metabolism (NAGS, PLA2G12B, AGCG8) was predominant in LW piglets. After long-term starvation stress, the level of energy metabolism (PLIN5, PLA2G12B) was significantly increased in MS piglets. The expression of immune (HLA-DQB1, IGHG4, COL3A1, CD28, LAT) and disease (HSPA1B, MINPPI, ADH1C, GAL3ST1) related genes were significantly increased in two breeds of piglets. These results suggest that short-term stress mainly enhances immunity and energy metabolism in piglets, while long-term starvation produces greater stress on piglets, making it difficult for them to compensate for the damage to their bodies through self-regulation. This information can help improve the stress resistance of piglets through molecular breeding.
Collapse
Affiliation(s)
- Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianqin Ding
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhiling Dong
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yifei Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
2
|
James J, Coelho A, Lahore GF, Hernandez CM, Forster F, Malissen B, Holmdahl R. Redox Regulation of LAT Enhances T Cell-Mediated Inflammation. Antioxidants (Basel) 2024; 13:499. [PMID: 38671946 PMCID: PMC11047684 DOI: 10.3390/antiox13040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The positional cloning of single nucleotide polymorphisms (SNPs) of the neutrophil cytosolic factor 1 (Ncf1) gene, advocating that a low oxidative burst drives autoimmune disease, demands an understanding of the underlying molecular causes. A cellular target could be T cells, which have been shown to be regulated by reactive oxygen species (ROS). However, the pathways by which ROS mediate T cell signaling remain unclear. The adaptor molecule linker for activation of T cells (LAT) is essential for coupling T cell receptor-mediated antigen recognition to downstream responses, and it contains several cysteine residues that have previously been suggested to be involved in redox regulation. To address the possibility that ROS regulate T cell-dependent inflammation through LAT, we established a mouse strain with cysteine-to-serine mutations at positions 120 and 172 (LATSS). We found that redox regulation of LAT through C120 and C172 mediate its localization and phosphorylation. LATSS mice had reduced numbers of double-positive thymocytes and naïve peripheral T cells. Importantly, redox insensitivity of LAT enhanced T cell-dependent autoimmune inflammation in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). This effect was reversed on an NCF1-mutated (NCF1m1j), ROS-deficient, background. Overall, our data show that LAT is redox-regulated, acts to repress T cell activation, and is targeted by ROS induced by NCF1 in antigen-presenting cells (APCs).
Collapse
Affiliation(s)
- Jaime James
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Ana Coelho
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Gonzalo Fernandez Lahore
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Clara M. Hernandez
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Florian Forster
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Bernard Malissen
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, 13288 Marseille, France;
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| |
Collapse
|
3
|
Liang P, Wu Y, Qu S, Younis M, Wang W, Wu Z, Huang X. Exploring the biomarkers and potential therapeutic drugs for sepsis via integrated bioinformatic analysis. BMC Infect Dis 2024; 24:32. [PMID: 38166628 PMCID: PMC10763157 DOI: 10.1186/s12879-023-08883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by an excessive inflammatory response to an infection, associated with high mortality. However, the regulatory mechanism of sepsis remains unclear. RESULTS In this study, bioinformatics analysis revealed the novel key biomarkers associated with sepsis and potential regulators. Three public datasets (GSE28750, GSE57065 and GSE95233) were employed to recognize the differentially expressed genes (DEGs). Taking the intersection of DEGs from these three datasets, GO and KEGG pathway enrichment analysis revealed 537 shared DEGs and their biological functions and pathways. These genes were mainly enriched in T cell activation, differentiation, lymphocyte differentiation, mononuclear cell differentiation, and regulation of T cell activation based on GO analysis. Further, pathway enrichment analysis revealed that these DEGs were significantly enriched in Th1, Th2 and Th17 cell differentiation. Additionally, five hub immune-related genes (CD3E, HLA-DRA, IL2RB, ITK and LAT) were identified from the protein-protein interaction network, and sepsis patients with higher expression of hub genes had a better prognosis. Besides, 14 drugs targeting these five hub related genes were revealed on the basis of the DrugBank database, which proved advantageous for treating immune-related diseases. CONCLUSIONS These results strengthen the new understanding of sepsis development and provide a fresh perspective into discriminating the candidate biomarkers for predicting sepsis as well as identifying new drugs for treating sepsis.
Collapse
Affiliation(s)
- Pingping Liang
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China
| | - Siying Qu
- Department of Clinical Laboratory, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Zhuhai, Guangdong Province, Zhuhai, 519020, China
| | - Muhammad Younis
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China
| | - Wei Wang
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China
| | - Zhilong Wu
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China.
| | - Xi Huang
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China.
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China.
| |
Collapse
|
4
|
Yang Z, Pietrobon V, Bobbin M, Stefanson O, Yang J, Goswami A, Alphson B, Choi H, Magallanes K, Cai Q, Barrett D, Wang B, Qi LS, Marincola FM. Nanoscale, antigen encounter-dependent, IL-12 delivery by CAR T cells plus PD-L1 blockade for cancer treatment. J Transl Med 2023; 21:158. [PMID: 36855120 PMCID: PMC9976446 DOI: 10.1186/s12967-023-04014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapies for the treatment of hematological malignancies experienced tremendous progress in the last decade. However, essential limitations need to be addressed to further improve efficacy and reduce toxicity to assure CAR-T cell persistence, trafficking to the tumor site, resistance to an hostile tumor microenvironment (TME), and containment of toxicity restricting production of powerful but potentially toxic bioproducts to the TME; the last could be achieved through contextual release upon tumor antigen encounter of factors capable of converting an immune suppressive TME into one conducive to immune rejection. METHODS We created an HER2-targeting CAR-T (RB-312) using a clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system, which induces the expression of the IL-12 heterodimer via conditional transcription of its two endogenous subunits p35 and p40. This circuit includes two lentiviral constructs. The first one (HER2-TEV) expresses an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3z co-stimulatory domains linked to the tobacco etch virus (TEV) protease and two single guide RNAs (sgRNA) targeting the interleukin (IL)-12A and IL12B transcription start site (TSS), respectively. The second construct (LdCV) encodes linker for activation of T cells (LAT) fused to nuclease-deactivated Streptococcus Pyogenes Cas9 (dCas9)-VP64-p65-Rta (VPR) via a TEV-cleavable sequence (TCS). Activation of the CAR brings HER2-TEV in close proximity to LdCV releasing dCas9 for nuclear localization. This conditional circuit leads to conditional and reversible induction of the IL-12/p70 heterodimer. RB-312 was compared in vitro to controls (cRB-312), lacking the IL-12 sgRNAs and conventional HER2 CAR (convCAR). RESULTS The inducible CRISPRa system activated endogenous IL-12 expression resulting in enhanced secondary interferon (FN)-γ production, cytotoxicity, and CAR-T proliferation in vitro, prolonged in vivo persistence and greater suppression of HER2+ FaDu oropharyngeal cancer cell growth compared to the conventional CAR-T cell product. No systemic IL-12 was detected in the peripheral circulation. Moreover, the combination with programmed death ligand (PD-L1) blockade demonstrated robust synergistic effects. CONCLUSIONS RB-312, the first clinically relevant product incorporating a CRISPRa system with non-gene editing and reversible upregulation of endogenous gene expression that promotes CAR-T cells persistence and effectiveness against HER2-expressing tumors. The autocrine effects of reversible, nanoscale IL-12 production limits the risk of off-tumor leakage and systemic toxicity.
Collapse
Affiliation(s)
- Zhifen Yang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA.
| | | | - Maggie Bobbin
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Jin Yang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | | | - Hana Choi
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA, 90404, USA
| | | | - Bing Wang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Lei S Qi
- Department of Bioengineering, Department of Chemical and Systems Biology, Stanford University, ChEM-H, Stanford, CA, 94305, USA.
| | | |
Collapse
|
5
|
Yang Z, Li L, Turkoz A, Chen P, Harari-Steinfeld R, Bobbin M, Stefanson O, Choi H, Pietrobon V, Alphson B, Goswami A, Balan V, Kearney A, Patel D, Yang J, Inel D, Vinod V, Cesano A, Wang B, Roh KH, Qi LS, Marincola FM. Contextual reprogramming of CAR-T cells for treatment of HER2 + cancers. J Transl Med 2021; 19:459. [PMID: 34743703 PMCID: PMC8573881 DOI: 10.1186/s12967-021-03132-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells combined with checkpoint inhibition may prevent T cell exhaustion and improve clinical outcomes. However, the approach is limited by cumulative costs and toxicities. METHODS To overcome this drawback, we created a CAR-T (RB-340-1) that unites in one product the two modalities: a CRISPR interference-(CRISPRi) circuit prevents programmed cell death protein 1 (PD-1) expression upon antigen-encounter. RB-340-1 is engineered to express an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3ζ co-stimulatory domains linked to the tobacco etch virus (TEV) protease and a single guide RNA (sgRNA) targeting the PD-1 transcription start site (TSS). A second constructs includes linker for activation of T cells (LAT) fused to nuclease-deactivated spCas9 (dCas9)-Kruppel-associated box (KRAB) via a TEV-cleavable sequence (TCS). Upon antigen encounter, the LAT-dCas9-KRAB (LdCK) complex is cleaved by TEV allowing targeting of dCas9-KRAB to the PD-1 gene TSS. RESULTS Here, we show that RB-340-1 consistently demonstrated higher production of homeostatic cytokines, enhanced expansion of CAR-T cells in vitro, prolonged in vivo persistence and more efficient suppression of HER2+ FaDu oropharyngeal cancer growth compared to the respective conventional CAR-T cell product. CONCLUSIONS As the first application of CRISPRi toward a clinically relevant product, RB-340-1 with the conditional, non-gene editing and reversible suppression promotes CAR-T cells resilience to checkpoint inhibition, and their persistence and effectiveness against HER2-expressing cancer xenografts.
Collapse
Affiliation(s)
- Zhifen Yang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Lingyu Li
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Ahu Turkoz
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Pohan Chen
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Maggie Bobbin
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Hana Choi
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | | | | | - Vitaly Balan
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Alper Kearney
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Jin Yang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Damla Inel
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Veena Vinod
- ESSA Pharma, South San Francisco, CA, 94080, USA
| | | | - Bing Wang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Lei S Qi
- Department of Bioengineering, Department of Chemical and Systems Biology, Stanford University, ChEM-H, Stanford, CA, 94305, USA.
| | - Francesco M Marincola
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA.
- Gilead/Kite, Santa Monica, CA, 90404, USA.
| |
Collapse
|
6
|
Zeng X, Feng J, Yang Y, Zhao R, Yu Q, Qin H, Wei L, Ji P, Li H, Wu Z, Zhang J. Screening of Key Genes of Sepsis and Septic Shock Using Bioinformatics Analysis. J Inflamm Res 2021; 14:829-841. [PMID: 33737824 PMCID: PMC7962593 DOI: 10.2147/jir.s301663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Sepsis is a disease associated with high mortality. We performed bioinformatic analysis to identify key biomarkers associated with sepsis and septic shock. Methods The top 20% of genes showing the greatest variance between sepsis and controls in the GSE13904 dataset (children) were screened by co-expression network analysis. The differentially expressed genes (DEGs) were identified through analyzing differential gene expression between sepsis patients and control in the GSE13904 (children) and GSE154918 (adult) data sets. Intersection analysis of module genes and DEGs was performed to identify common DEGs for enrichment analysis, protein-protein interaction network (PPI network) analysis, and Short Time-series Expression Miner (STEM) analysis. The PPI network genes were ranked by degree of connectivity, and the top 100 sepsis-associated genes were identified based on the area under the receiver operating characteristic curve (AUC). In addition, we evaluated differences in immune cell infiltration between sepsis patients and controls in children (GSE13904, GSE25504) and adults (GSE9960, GSE154918). Finally, we analyzed differences in DNA methylation levels between sepsis patients and controls in GSE138074 (adults). Results The common genes were associated mainly with up-regulated inflammatory and metabolic responses, as well as down-regulated immune responses. Sepsis patients showed lower infiltration by most types of immune cells. Genes in the PPI network with AUC values greater than 0.9 in both GSE13904 (children) and GSE154918 (adults) were screened as key genes for diagnosis. These key genes (MAPK14, FGR, RHOG, LAT, PRKACB, UBE2Q2, ITK, IL2RB, and CD247) were also identified in STEM analysis to be progressively dysregulated across controls, sepsis patients and patients with septic shock. In addition, the expression of MAPK14, FGR, and CD247 was modified by methylation. Conclusion This study identified several potential diagnostic genes and inflammatory and metabolic responses mechanisms associated with the development of sepsis.
Collapse
Affiliation(s)
- Xiaoliang Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Han Qin
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Lile Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Pan Ji
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Hongyuan Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Zimeng Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| |
Collapse
|
7
|
Saez JJ, Dogniaux S, Shafaq-Zadah M, Johannes L, Hivroz C, Zucchetti AE. Retrograde and Anterograde Transport of Lat-Vesicles during the Immunological Synapse Formation: Defining the Finely-Tuned Mechanism. Cells 2021; 10:cells10020359. [PMID: 33572370 PMCID: PMC7916135 DOI: 10.3390/cells10020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
LAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of four proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute to both pathways, are in our cellular context, specifically and respectively, involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point to the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.
Collapse
Affiliation(s)
- Juan José Saez
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Stephanie Dogniaux
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Massiullah Shafaq-Zadah
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Claire Hivroz
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| | - Andrés Ernesto Zucchetti
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| |
Collapse
|
8
|
Balagopalan L, Raychaudhuri K, Samelson LE. Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Front Cell Dev Biol 2021; 8:608530. [PMID: 33575254 PMCID: PMC7870797 DOI: 10.3389/fcell.2020.608530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|