1
|
Miranda-Poma J, Trilla-Fuertes L, López-Camacho E, Zapater-Moros A, López-Vacas R, Lumbreras-Herrera MI, Pertejo-Fernandez A, Fresno-Vara JÁ, Espinosa-Arranz E, Gámez-Pozo A, Pinto-Marín Á. MiRNAs in renal cell carcinoma. Clin Transl Oncol 2022; 24:2055-2063. [PMID: 35729452 DOI: 10.1007/s12094-022-02866-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) are small RNA sequences that act as post-transcriptional regulatory genes to control many cellular processes through pairing bases with a complementary messenger RNA (mRNA). A single miRNA molecule can regulate more than 200 different transcripts and the same mRNA can be regulated by multiple miRNAs. In this review, we highlight the importance of miRNAs and collect the existing evidence on their relationship with kidney cancer.
Collapse
Affiliation(s)
| | | | | | | | - Rocío López-Vacas
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | | | - Juan Ángel Fresno-Vara
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine SL, Madrid, Spain.,CIBERONC, ISCIII, Madrid, Spain
| | | | - Angelo Gámez-Pozo
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine SL, Madrid, Spain
| | | |
Collapse
|
2
|
Zhang C, Zhang Q, Li H, Wu Y. miR-1229-3p as a Prognostic Predictor Facilitates Cell Viability, Migration, and Invasion of Hepatocellular Carcinoma. Horm Metab Res 2021; 53:759-766. [PMID: 34740278 DOI: 10.1055/a-1646-8415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent human malignancies with high mortality. Increasing studies have revealed microRNAs (miRNAs) play crucial roles in the tumorigenesis and progression of cancers. The current study investigated the expression levels of miR-1229-3p and its potential role in HCC. This study enrolled 121 HCC patients. The expression of miR-1229-3p was measured using RT-qPCR in HCC tissue samples and cell lines. The association of miR-1229-3p expression with clinical parameters and patients' prognosis was analyzed by χ2 test, Kaplan-Meier, and multivariate Cox regression analyses, respectively. The functions of miR-1229-3p in HCC cells were explored by CCK-8 assay, Transwell migration, and invasion assays. miR-1229-3p was upregulated in HCC tissue samples and cell lines. The upregulation of miR-1229-3p was related to positive lymph node metastasis and advanced TNM stages and predicted with patients' poor prognosis. Overexpression of miR-1229-3p facilitated cell viability and metastasis of HCC cells while knockdown of miR-1229-3p suppressed cell viability and metastasis of HCC cells in vitro. miR-1229-3p may function as an oncogenic role in HCC via promoting cell viability and metastasis. Moreover, miR-1229-3p may be a predictive marker for tumor development and prognosis of HCC patients.
Collapse
Affiliation(s)
- Chunhong Zhang
- Department of Urology Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qi Zhang
- Publicity Section, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Honghai Li
- Department of General Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, China
| | - Yan Wu
- Department of General Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, China
| |
Collapse
|
3
|
Zhao H, Zhang M, Yang X, Song D. Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells. J Microbiol Biotechnol 2021; 31:1331-1342. [PMID: 34373436 PMCID: PMC9705835 DOI: 10.4014/jmb.2106.06028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.
Collapse
Affiliation(s)
- Haoliang Zhao
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Ming Zhang
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Xuejing Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Dong Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China,Corresponding author Phone: +86-0351-8368114 E-mail:
| |
Collapse
|
4
|
Gilyazova I, Ivanova E, Gilyazova G, Sultanov I, Izmailov A, Safiullin R, Pavlov V, Khusnutdinova E. Methylation and expression levels of microRNA-23b/-24-1/-27b, microRNA-30c-1/-30e, microRNA-301a and let-7g are dysregulated in clear cell renal cell carcinoma. Mol Biol Rep 2021; 48:5561-5569. [PMID: 34302585 DOI: 10.1007/s11033-021-06573-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Renal cell carcinoma is the most common form of kidney cancer in adults. DNA methylation of regulatory sequences at the genomic level and interaction between microRNAs and the messenger RNAs of target genes at the posttranscriptional level contribute to the dynamic regulation of gene activity. Aberrations in these mechanisms can result in impaired functioning of cell signaling pathways, such as that observed in malignant tumors. We hypothesized that microRNA genes methylation may be associated with renal cancer in patients. METHODS AND RESULTS We examined methylation levels of 22 microRNA genes in tumor and normal kidney tissue of 30 patients with TNM Stage III clear cell renal cell carcinoma using a pathway-specific real-time polymerase chain reaction array (EpiTect Methyl II PCR Arrays, Qiagen). MicroRNA expression analysis by quantitative polymerase chain reaction was also performed. Significant differences in methylation levels were found in two genes and in two clusters of microRNA genes. MicroRNA-23b/-24-1/-27b, microRNA -30c-1/-30e and let-7 g was hypermetylated in clear cell renal cell carcinoma tissue, microRNA -301a was hypomethylated in tumor compared with the adjacent normal tissues. Expression of microRNA-301a, microRNA-23b in the clear cell renal cell carcinoma tissues was significantly overexpressed when compared with the adjacent normal tissues and let-7 g was significantly downregulated in tumor. CONCLUSIONS Our results may indicate the contribution of microRNA-301a, microRNA-23b and let-7 g in the pathogenesis of renal cancer, but further studies are needed to determine the functional significance of the detected changes.
Collapse
Affiliation(s)
- I Gilyazova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - E Ivanova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054.
| | - G Gilyazova
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - I Sultanov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - A Izmailov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - R Safiullin
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - V Pavlov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - E Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| |
Collapse
|
5
|
The Ambivalent Role of miRNAs in Carcinogenesis: Involvement in Renal Cell Carcinoma and Their Clinical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040322. [PMID: 33918154 PMCID: PMC8065760 DOI: 10.3390/ph14040322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
The analysis of microRNA (miRNAs), small, non-coding endogenous RNA, plays a crucial role in oncology. These short regulatory sequences, acting on thousands of messenger RNAs (mRNAs), modulate gene expression at the transcriptional and post-transcriptional level leading to translational repression or degradation of target molecules. Although their function is required for several physiological processes, such as proliferation, apoptosis and cell differentiation, miRNAs are also responsible for development and/or progression of several cancers, since they may interact with classical tumor pathways. In this review, we highlight recent advances in deregulated miRNAs in cancer focusing on renal cell carcinoma (RCC) and provide an overview of the potential use of miRNA in their clinical settings, such as diagnostic and prognostic markers.
Collapse
|