1
|
Kakugawa K, Uehara S, Katoh S, Arimatsu N, Ogaki S, Masumura K, Murakawa H, Arakawa K, Mizunuma M. Date, a major dried fruit, extends the lifespan of Caenorhabditiselegans. J Biosci Bioeng 2025:S1389-1723(25)00086-6. [PMID: 40350339 DOI: 10.1016/j.jbiosc.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Dried fruits have many advantages on condensed nutrients, food preservation, and availability through all seasons. This study investigated the longevity effects of five commercially available dried fruits (date, pineapple, fig, mango, and prune) on Caenorhabditis elegans. Each of the five dried fruits remarkably increased the lifespan compared with the control group. Especially, date fruit had the longest mean and maximum lifespan. In the analysis for the ratio of mean lifespan (MLS) to maximum lifespan in order to clarify their relationship, the ratio for date fruit was approximately 0.9, showing that it results in a longer MLS than other dried fruits. These results imply that date fruit consumption leads to a significantly greater increase in the MLS of C. elegans. The date fruit examined in this study did not contain syringic acid, a previously reported factor known to extend lifespan in date fruit, suggesting that other unidentified component(s) may contribute to its longevity-promoting effect.
Collapse
Affiliation(s)
- Koji Kakugawa
- Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan.
| | - Shion Uehara
- Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Syunya Katoh
- Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Naoki Arimatsu
- Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Sho Ogaki
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Koji Masumura
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Hideki Murakawa
- Otafuku Vinegar Brewery Co., Ltd., 1-1 Ogu, Daiwa-cho, Mihara, Hiroshima 729-1323, Japan
| | - Kenji Arakawa
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Masaki Mizunuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
2
|
Rudgalvyte M, Atzei P, de Brito Francisco R, Naef R, Glauser DA. Dual-Acting Nitric Oxide Donor and Phosphodiesterase Inhibitor TOP-N53 Increases Lifespan and Health Span of Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001090. [PMID: 38660564 PMCID: PMC11040393 DOI: 10.17912/micropub.biology.001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The quest for extending lifespan and promoting a healthy aging has been a longstanding pursuit in the field of aging research. The control of aging and age-related diseases by nitric oxide (NO) and cGMP signaling is a broadly conserved process from worms to human. Here we show that TOP-N53, a dual-acting NO donor and PDE5 inhibitor, can increase both lifespan and health span in C. elegans .
Collapse
Affiliation(s)
- Martina Rudgalvyte
- Dept. Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Paola Atzei
- TOPADUR Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland
| | | | - Reto Naef
- TOPADUR Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland
| | - Dominique A. Glauser
- Dept. Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Kumar S, Akhila PV, Suchiang K. Hesperidin ameliorates Amyloid-β toxicity and enhances oxidative stress resistance and lifespan of Caenorhabditis elegans through acr-16 mediated activation of the autophagy pathway. Free Radic Biol Med 2023; 209:366-380. [PMID: 37913913 DOI: 10.1016/j.freeradbiomed.2023.10.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in aged populations. Aberrant amyloid-beta accumulation is a common pathological feature in AD patients. Dysfunction of autophagy and impairment of α7nAChR functioning are associated with enhanced amyloid-beta (Aβ) accumulation in AD patients. Hesperidin, a flavone glycoside found primarily in citrus species, is known to have anti-inflammatory, antioxidant, and neuroprotective effects. However, the underlying molecular mechanisms of hesperidin as an antiaging and anti-Aβ phytochemical were unclear. In this study, we found that hesperidin upregulates the acr-16 expression level in C. elegans as evidenced by increased GFP-tagged ACR-16 and GFP-tagged pmyo-3:ACR-16 expression in muscle and ventral nerve cord. Further, hesperidin upregulates the autophagy genes in wild-type N2, evident by increased GFP-tagged LGG-1 foci. However, hesperidin failed to upregulate the autophagy genes level in acr-16 mutant worms that suggests autophagy activation is mediated through acr-16. In addition, hesperidin showed antiaging and anti-oxidative effects, as evidenced by positive changes in different markers necessary for health span and lifespan. Additionally, hesperidin could upregulate acr-16 and autophagy genes (lgg-1 & bec-1) and ameliorates Aβ-induced toxicity as observed with reduce ROS accumulation, paralysis rate, and enhanced lifespan even in worms AD model CL4176 and CL2006 strain. Our finding suggests that hesperidin significantly enhances oxidative stress resistance, prolongs the lifespan, and protects against Aβ-induced toxicity in C. elegans. Thus, acr-16 mediated autophagy and antioxidation is associated with anti-aging and anti-Aβ effect of hesperidin.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India.
| | - P V Akhila
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
5
|
Jushaj A, Churgin M, De La Torre M, Kieswetter A, Driesschaert B, Dhondt I, Braeckman BP, Fang-Yen C, Temmerman L. Adult-restricted gene knock-down reveals candidates that affect locomotive healthspan in C. elegans. Biogerontology 2023; 24:225-233. [PMID: 36662373 DOI: 10.1007/s10522-022-10009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023]
Abstract
Understanding how we can age healthily is a challenge at the heart of biogerontological interest. Whereas myriad genes are known to affect the lifespan of model organisms, effects of such interventions on healthspan-the period of life where an animal is considered healthy, rather than merely alive-are less clear. To understand relationships between life- and healthspan, in recent years several platforms were developed with the purpose of assessing both readouts simultaneously. We here relied on one such platform, the WorMotel, to study effects of adulthood-restricted knock-down of 130 Caenorhabditis elegans genes on the locomotive health of the animals along their lifespans. We found that knock-down of six genes affected healthspan while lifespan remained unchanged. For two of these, F26A3.4 and chn-1, knock-down resulted in an improvement of healthspan. In follow-up experiments we showed that knockdown of F26A3.4 indeed improves locomotive health and muscle structure at old age.
Collapse
Affiliation(s)
- Areta Jushaj
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Matthew Churgin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Miguel De La Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Cornwell A, Llop JR, Salzman P, Rasmussen N, Thakar J, Samuelson AV. The Replica Set Method is a Robust, Accurate, and High-Throughput Approach for Assessing and Comparing Lifespan in C. elegans Experiments. FRONTIERS IN AGING 2022; 3:861701. [PMID: 35821830 PMCID: PMC9261357 DOI: 10.3389/fragi.2022.861701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The advent of feeding based RNAi in Caenorhabditis elegans led to an era of gene discovery in aging research. Hundreds of gerogenes were discovered, and many are evolutionarily conserved, raising the exciting possibility that the underlying genetic basis for healthy aging in higher vertebrates could be quickly deciphered. Yet, the majority of putative gerogenes have still only been cursorily characterized, highlighting the need for high-throughput, quantitative assessments of changes in aging. A widely used surrogate measure of aging is lifespan. The traditional way to measure mortality in C. elegans tracks the deaths of individual animals over time within a relatively small population. This traditional method provides straightforward, direct measurements of median and maximum lifespan for the sampled population. However, this method is time consuming, often underpowered, and involves repeated handling of a set of animals over time, which in turn can introduce contamination or possibly damage increasingly fragile, aged animals. We have previously developed an alternative "Replica Set" methodology, which minimizes handling and increases throughput by at least an order of magnitude. The Replica Set method allows changes in lifespan to be measured for over one hundred feeding-based RNAi clones by one investigator in a single experiment- facilitating the generation of large quantitative phenotypic datasets, a prerequisite for development of biological models at a systems level. Here, we demonstrate through analysis of lifespan experiments simulated in silico that the Replica Set method is at least as precise and accurate as the traditional method in evaluating and estimating lifespan, and requires many fewer total animal observations across the course of an experiment. Furthermore, we show that the traditional approach to lifespan experiments is more vulnerable than the Replica Set method to experimental and measurement error. We find no compromise in statistical power for Replica Set experiments, even for moderate effect sizes, or when simulated experimental errors are introduced. We compare and contrast the statistical analysis of data generated by the two approaches, and highlight pitfalls common with the traditional methodology. Collectively, our analysis provides a standard of measure for each method across comparable parameters, which will be invaluable in both experimental design and evaluation of published data for lifespan studies.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Jesse R. Llop
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Peter Salzman
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Niels Rasmussen
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
7
|
Sinha DB, Pincus ZS. High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans. PLoS One 2022; 17:e0257591. [PMID: 35108272 PMCID: PMC8809618 DOI: 10.1371/journal.pone.0257591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.
Collapse
Affiliation(s)
- Drew Benjamin Sinha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zachary Scott Pincus
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: ,
| |
Collapse
|
8
|
Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes. Sci Rep 2022; 12:1767. [PMID: 35110654 PMCID: PMC8810772 DOI: 10.1038/s41598-022-05823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Data from manual healthspan assays of the nematode Caenorhabditis elegans (C. elegans) can be complex to quantify. The first attempts to quantify motor performance were done manually, using the so-called thrashing or body bends assay. Some laboratories have automated these approaches using methods that help substantially to quantify these characteristic movements in small well plates. Even so, it is sometimes difficult to find differences in motor behaviour between strains, and/or between treated vs untreated worms. For this reason, we present here a new automated method that increases the resolution flexibility, in order to capture more movement details in large standard Petri dishes, in such way that those movements are less restricted. This method is based on a Cartesian robot, which enables high-resolution images capture in standard Petri dishes. Several cameras mounted strategically on the robot and working with different fields of view, capture the required C. elegans visual information. We have performed a locomotion-based healthspan experiment with several mutant strains, and we have been able to detect statistically significant differences between two strains that show very similar movement patterns.
Collapse
|
9
|
Neuroprotective Effects against Glutamate-Induced HT-22 Hippocampal Cell Damage and Caenorhabditis elegans Lifespan/Healthspan Enhancing Activity of Auricularia polytricha Mushroom Extracts. Pharmaceuticals (Basel) 2021; 14:ph14101001. [PMID: 34681226 PMCID: PMC8539790 DOI: 10.3390/ph14101001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is associated with several diseases, particularly neurodegenerative diseases, commonly found in the elderly. The attenuation of oxidative status is one of the alternatives for neuroprotection and anti-aging. Auricularia polytricha (AP), an edible mushroom, contains many therapeutic properties, including antioxidant properties. Herein, we report the effects of AP extracts on antioxidant, neuroprotective, and anti-aging activities. The neuroprotective effect of AP extracts against glutamate-induced HT-22 neuronal damage was determined by evaluating the cytotoxicity, intracellular reactive oxygen species (ROS) accumulation, and expression of antioxidant enzyme genes. Lifespan and healthspan assays were performed to examine the effects of AP extracts from Caenorhabditis elegans. We found that ethanolic extract (APE) attenuated glutamate-induced HT-22 cytotoxicity and increased the expression of antioxidant enzyme genes. Moreover, APE promoted in the longevity and health of the C. elegans. Chemical analysis of the extracts revealed that APE contains the highest quantity of flavonoids and a reasonable percentage of phenols. The lipophilic compounds in APE were identified by gas chromatography/mass spectrometry (GC/MS), revealing that APE mainly contains linoleic acid. Interestingly, linoleic acid suppressed neuronal toxicity and ROS accumulation from glutamate induction. These results indicate that AP could be an exciting natural source that may potentially serves as neuroprotective and anti-aging agents.
Collapse
|
10
|
Nakano Y, Moriuchi M, Fukushima Y, Hayashi K, Suico MA, Kai H, Koutaki G, Shuto T. Intrapopulation analysis of longitudinal lifespan in Caenorhabditis elegans identifies W09D10.4 as a novel AMPK-associated healthspan shortening factor. J Pharmacol Sci 2020; 145:241-252. [PMID: 33602504 DOI: 10.1016/j.jphs.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022] Open
Abstract
Caenorhabditis elegans is a model organism widely used for longevity studies. Current advances have been made in the methods that allow automated monitoring of C. elegans behavior. However, ordinary manual assays as well as automated methods have yet to achieve qualitative whole-life analysis of C. elegans longevity based on intrapopulation variation. Here, we utilized live-cell analysis system to determine the parameters of nematode lifespans. Image-based superposition method enabled to determine not only frailty in worms, but also to measure individual and longitudinal lifespan, healthspan, and frailspan. Notably, k-means clustering via principal component analysis revealed four clusters with distinct longevity patterns in wild-type C. elegans. Physiological relevance of clustering was confirmed by assays with pharmacological and/or genetic manipulation of AMP-activated protein kinase (AMPK), a crucial regulator of healthspan. Finally, we focused on W09D10.4 among the possible regulators extracted by integrative expression analysis with existing data sets. Importantly, W09D10.4 knockdown increased the high-healthspan populations only in the presence of AMPK, suggesting that W09D10.4 is a novel AMPK-associated healthspan shortening factor in C. elegans. Overall, the study establishes a novel platform of longitudinal lifespan in C. elegans, which is user-friendly, and may be a useful pharmacological tool to identify healthspan modulatory factors.
Collapse
Affiliation(s)
- Yoshio Nakano
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masataka Moriuchi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kyotaro Hayashi
- Department of Electrical and Computer Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Go Koutaki
- Department of Electrical and Computer Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
11
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|