1
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
2
|
Sharma P, Chaturvedi P, Chandra R, Kumar S. Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. CHEMOSPHERE 2022; 295:133823. [PMID: 35114263 DOI: 10.1016/j.chemosphere.2022.133823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals phytoremediation from pulp and paper industry (PPI) sludge was conducted by employing root-associated Brevundimonas sp (PS-4 MN238722.1) in rhizospheric zone of Saccharum munja L. for its detoxification. The study was aimed to investigate the efficiency of Saccharum munja L. for the removal of heavy metals along with physico-chemical parameters through bacterial interactions. Physico-chemical examination of PPI sludge showed biochemical oxygen demand (8357 ± 94 mg kg-1), electrical conductivity (2264 ± 49 μmhoscm-1), total phenol (521 ± 24 mg kg-1), total dissolve solid (1547 ± 23 mg kg-1), total nitrogen (264 ± 2.13 mg kg-1), pH (8.2 ± 0.11), chemical oxygen demand (34756 ± 214 mg kg-1), color (2434 ± 45 Co-Pt), total suspended solid (76 ± 0.67 mg kg-1), sulphate (2462 ± 13 mg kg-1), chlorolignin (597 ± 13.01 mg kg-1), K+ (21.04 ± 0.26 mg kg-1), total solid (1740 ± 54 mg kg-1), phosphorous, Cl-, and Na+. Heavy metals, such as Fe followed by Zn, Mn, Cd, Cu, Ni, Pb, As, Cr and Hg were above the permissible limit. Root and shoot of Saccharum munja L. revealed highest concentrations of Cd followed by Mn, Ni, Fe, Zn, Cu, As, Cr, Hg, and Pb. Tested metals (Fe, Mn, Pb, Cd, Cr, Cu, Zn, Ni, As, and Hg) bioaccumulation and translocation factors were also revealed to be < 1 and >1, respectively, demonstrating that these plants have considerable absorption and translocation abilities. Plant growth-promoting activity, such as ligninolytic enzymes, hydrolytic enzymes, indole acetic acid, and siderophore production activity of Brevundimonas sp. (PS-4 MN238722.1) were also noted to be higher. These findings support the use of Brevundimonas sp (PS-4 MN238722.1) in combination with Saccharum munja L. plant as interdisciplinary management of industrial sludge at polluted areas for the prevention of soils near the industrial site.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
3
|
Chang F, Wu L, Xiong Z, Yang Y, Xia X, Wu Q, Ge C, Chen H. Light-induced expression of a novel marine laccase in Escherichia coli from Marinomonas profundimaris and its application in synthetic dye decolorization. Protein Expr Purif 2022; 197:106108. [DOI: 10.1016/j.pep.2022.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
4
|
El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind's Challenges. J Fungi (Basel) 2021; 8:23. [PMID: 35049963 PMCID: PMC8778853 DOI: 10.3390/jof8010023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes have played a crucial role in mankind's challenges to use different types of biological systems for a diversity of applications. They are proteins that break down and convert complicated compounds to produce simple products. Fungal enzymes are compatible, efficient, and proper products for many uses in medicinal requests, industrial processing, bioremediation purposes, and agricultural applications. Fungal enzymes have appropriate stability to give manufactured products suitable shelf life, affordable cost, and approved demands. Fungal enzymes have been used from ancient times to today in many industries, including baking, brewing, cheese making, antibiotics production, and commodities manufacturing, such as linen and leather. Furthermore, they also are used in other fields such as paper production, detergent, the textile industry, and in drinks and food technology in products manufacturing ranging from tea and coffee to fruit juice and wine. Recently, fungi have been used for the production of more than 50% of the needed enzymes. Fungi can produce different types of enzymes extracellularly, which gives a great chance for producing in large amounts with low cost and easy viability in purified forms using simple purification methods. In the present review, a comprehensive trial has been advanced to elaborate on the different types and structures of fungal enzymes as well as the current status of the uses of fungal enzymes in various applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Ahmed K. Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, Giza 12622, Egypt;
| | - Raied Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Yousra A. El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| |
Collapse
|
5
|
Thermotolerance and Cellulolytic Activity of Fungi Isolated from Soils/Waste Materials in the Industrial Region of Nigeria. Curr Microbiol 2021; 78:2660-2671. [PMID: 34002268 DOI: 10.1007/s00284-021-02528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
The current study aimed on isolating thermotolerant, cellulolytic fungi from different tropical soil/waste materials samples such as wood waste, sawmill, decomposing straw and compost pit sites in Abraka, Southern Nigeria and assessing their applications in diverse cellulolytic processes. Fungal isolates were identified based on cultural, morphological, ITS-5.8S barcoding, reproductive structures and thereafter screened for thermotolerance and cellulolytic activities [carboxy methyl cellulase (CMC-ase) and filter paperase (FP-ase)] by cultivating at 45, 50, 60, 70, 80° and 45 °C, respectively. The highest fungal abundance (44.4%) was observed in the compost pit while the lowest (11.1%) was recorded for sawmill. Nine thermotolerant fungal isolates were identified: Aspergillus flavus (4), Blakeslea sp. (3), and Trichoderma asperellum (2). Among them only five, including three A. flavus, one Blakeslea sp. and one T. asperellum, exhibited cellulolytic activity ranging from 12.11 ± 0.01 to 18.42 ± 5.39 µg/mL and 0.36 ± 0.01-9.21 ± 2.52 µg/mL for CMC-ase and filter paperase FP-ase assay, respectively. The low Michaelis-Menten constants of 1.137 for CMC-ase and 1.195 for FP-ase were obtained, indicated a strong affinity for the substrate. The thermotolerance coupled with cellulolytic activity of these isolates make them attractive for potential application in industries where they can be of economic and environmental benefits as against the use of chemicals.
Collapse
|
6
|
Bhamare HM, Sayyed RZ, Marraiki N, Elgorban AM, Syed A, Ali El-Enshasy H, Dailin DJ. Correction: Tree bark scrape fungus: A potential source of laccase for application in bioremediation of non-textile dyes. PLoS One 2021; 16:e0245183. [PMID: 33400716 PMCID: PMC7785228 DOI: 10.1371/journal.pone.0245183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
|
8
|
Ezike TC, Ezugwu AL, Udeh JO, Eze SOO, Chilaka FC. Purification and characterisation of new laccase from Trametes polyzona WRF03. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00566. [PMID: 33299811 PMCID: PMC7701954 DOI: 10.1016/j.btre.2020.e00566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 11/05/2022]
Abstract
Trametes polyzona WRF03 produced high yield of true laccase. Trametes polyzona WRF03 laccase was relatively pH and temperature stable. Fe2+, sodium azide and sodium cyanide greatly inhibited laccase activity. Trametes polyzona WRF03 laccase decolorised many classes of synthetic dyes.
The molecular screening for laccase specific gene sequences in Trametes polyzona WRF03 (TpWRF03) using designed oligonucleotide primers analogous to the conserved sequences on the copper-binding regions of known laccases showed positive amplification with an amplicon size corresponding to 1500 bp. The purified TpWRF03 laccase (TpL) is a monomer with a molecular weight corresponding to 66 kDa. The enzyme had an optimal pH of 4.5 and temperature of 55 °C. TpL was most stable within pH of 5.5–6.5 and at a temperature range of 40–50 °C. Sodium azide, sodium cyanide and Fe2+ greatly inhibited the enzyme activity. TpL showed more than 50 % decolourisation efficiency on coomassie brilliant blue (72.35 %) and malachite green (57.84 %) but displayed low decolourisation efficiency towards Azure B (1.78 %) and methylene blue (0.38 %). The results showed that TpWRF03 produces high-yield of true laccase with robust properties for biotechnological applications.
Collapse
Affiliation(s)
| | - Arinze Linus Ezugwu
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jerry Okwudili Udeh
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | | |
Collapse
|