1
|
Freitas JF, Oliveira TT, Agnez-Lima LF. Metaviromic reveals the dynamics and diversity of the virosphere in wastewater samples from Natal, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124752. [PMID: 39154883 DOI: 10.1016/j.envpol.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic underscored the significance of omics technology and Wastewater-Based Epidemiology for epidemic preparedness. This study investigates the virosphere in wastewater samples from Natal (Brazil), aiming to understand its structure, relationships, and potential. Metaviromic analysis was used on DNA and RNA from weekly samples collected over a year (June/2021 to May/2022) from three wastewater treatment plants. The virosphere showed stability, particularly in viruses infecting microorganisms and plants. However, an alternation of representatives of viruses that infect animals has been observed. Among the most abundant viruses infecting microorganisms are genera associated with the bacterial genera Escherichia, Pseudomonas, and Caulobacte. Regarding the viruses infecting plants, Sobemovirus and Tobamovirus are the most abundant genera. Odontoglossum ringspot virus was identified as a possible RNA virus biomarker. Among DNA viruses infecting animals, genera Bocaparvovirus and Mastadenovirus are the most prevalent. Intriguingly, some Poxviridae family members were observed in the samples. Co-occurrence network analysis identified potential biomarkers like Volepox virus, Anatid herpesvirus 1, and Caviid herpesvirus 2. Among RNA viruses affecting animals, Mamastrovirus, Rotavirus, and Norovirus genera were the most abundant pathogens. Furthermore, members of the Coronaviridae family exhibited a high degree of centrality values in the co-occurrence network, even connecting with unclassified viruses. The study emphasizes the importance of research in understanding the roles of unclassified viruses. In addition, we observed an association between Coronaviridae reads, rainfall, and the number of reported COVID-19 cases. Our study highlights the diversity and complexity of the viral community in wastewater and the need for research to understand better the ecological roles unclassified viruses play. Such advances will significantly contribute to our preparedness and response to future viral threats. Furthermore, our study contributes to knowledge of virosphere dynamics, offering insights that can contribute to the direction of future public health policies and interventions.
Collapse
Affiliation(s)
- Júlia Firme Freitas
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thais Teixeira Oliveira
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
2
|
Olea-Ozuna RJ, Poggio S, Bergström E, Osorio A, Elufisan TO, Padilla-Gómez J, Martínez-Aguilar L, López-Lara IM, Thomas-Oates J, Geiger O. Genes required for phosphosphingolipid formation in Caulobacter crescentus contribute to bacterial virulence. PLoS Pathog 2024; 20:e1012401. [PMID: 39093898 PMCID: PMC11324152 DOI: 10.1371/journal.ppat.1012401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/14/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Sphingolipids are ubiquitous in membranes of eukaryotes and are associated with important cellular functions. Although sphingolipids occur scarcely in bacteria, for some of them they are essential and, in other bacteria, they contribute to fitness and stability of the outer membrane, such as in the well-studied α-proteobacterium Caulobacter crescentus. We previously defined five structural genes for ceramide synthesis in C. crescentus, among them the gene for serine palmitoyltransferase, the enzyme that catalyzes the committed step of sphingolipid biosynthesis. Other mutants affected in genes of this same genomic region show cofitness with a mutant deficient in serine palmitoyltransferase. Here we show that at least two phosphosphingolipids are produced in C. crescentus and that at least another six gene products are needed for the decoration of ceramide upon phosphosphingolipid formation. All eleven genes participating in phosphosphingolipid formation are also required in C. crescentus for membrane stability and for displaying sensitivity towards the antibiotic polymyxin B. The genes for the formation of complex phosphosphingolipids are also required for C. crescentus virulence on Galleria mellonella insect larvae.
Collapse
Affiliation(s)
- Roberto Jhonatan Olea-Ozuna
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| | - Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ed Bergström
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, Heslington, York, United Kingdom
| | - Aurora Osorio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Temidayo Oluyomi Elufisan
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| | - Jonathan Padilla-Gómez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| | - Lourdes Martínez-Aguilar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| | - Isabel M. López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| | - Jane Thomas-Oates
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, Heslington, York, United Kingdom
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, Mexico
| |
Collapse
|
3
|
Lin WH, Tsai TS. Comparisons of the Oral Microbiota from Seven Species of Wild Venomous Snakes in Taiwan Using the High-Throughput Amplicon Sequencing of the Full-Length 16S rRNA Gene. BIOLOGY 2023; 12:1206. [PMID: 37759605 PMCID: PMC10525742 DOI: 10.3390/biology12091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
A venomous snake's oral cavity may harbor pathogenic microorganisms that cause secondary infection at the wound site after being bitten. We collected oral samples from 37 individuals belonging to seven species of wild venomous snakes in Taiwan, including Naja atra (Na), Bungarus multicinctus (Bm), Protobothrops mucrosquamatus (Pm), Trimeresurus stejnegeri (Ts), Daboia siamensis (Ds), Deinagkistrodon acutus (Da), and alpine Trimeresurus gracilis (Tg). Bacterial species were identified using full-length 16S rRNA amplicon sequencing analysis, and this is the first study using this technique to investigate the oral microbiota of multiple Taiwanese snake species. Up to 1064 bacterial species were identified from the snake's oral cavities, with 24 pathogenic and 24 non-pathogenic species among the most abundant ones. The most abundant oral bacterial species detected in our study were different from those found in previous studies, which varied by snake species, collection sites, sampling tissues, culture dependence, and analysis methods. Multivariate analysis revealed that the oral bacterial species compositions in Na, Bm, and Pm each were significantly different from the other species, whereas those among Ts, Ds, Da, and Tg showed fewer differences. Herein, we reveal the microbial diversity in multiple species of wild snakes and provide potential therapeutic implications regarding empiric antibiotic selection for wildlife medicine and snakebite management.
Collapse
Affiliation(s)
- Wen-Hao Lin
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
4
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Pérez-Ortega J, van Harten RM, Haagsman HP, Tommassen J. Physiological consequences of inactivation of lgmB and lpxL1, two genes involved in lipid A synthesis in Bordetella bronchiseptica. Res Microbiol 2023; 174:104049. [PMID: 36871896 DOI: 10.1016/j.resmic.2023.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
To develop a Bordetella bronchiseptica vaccine with reduced endotoxicity, we previously inactivated lpxL1, the gene encoding the enzyme that incorporates a secondary 2-hydroxy-laurate in lipid A. The mutant showed a myriad of phenotypes. Structural analysis showed the expected loss of the acyl chain but also of glucosamine (GlcN) substituents, which decorate the phosphates in lipid A. To determine which structural change causes the various phenotypes, we inactivated here lgmB, which encodes the GlcN transferase, and lpxL1 in an isogenic background and compared the phenotypes. Like the lpxL1 mutation, the lgmB mutation resulted in reduced potency to activate human TLR4 and to infect macrophages and in increased susceptibility to polymyxin B. These phenotypes are therefore related to the loss of GlcN decorations. The lpxL1 mutation had a stronger effect on hTLR4 activation and additionally resulted in reduced murine TLR4 activation, surface hydrophobicity, and biofilm formation, and in a fortified outer membrane as evidenced by increased resistance to several antimicrobials. These phenotypes, therefore, appear to be related to the loss of the acyl chain. Moreover, we determined the virulence of the mutants in the Galleria mellonella infection model and observed reduced virulence of the lpxL1 mutant but not of the lgmB mutant.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Roel M van Harten
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands.
| | - Henk P Haagsman
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands.
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Vercruysse M, Dylus D. Special issue of BBA reviews — Molecular Cell Research: The Gram-negative envelope and potential targets for novel antibiotics. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119472. [PMID: 37011731 DOI: 10.1016/j.bbamcr.2023.119472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023]
|
7
|
Luiz de Freitas L, Pereira da Silva F, Fernandes KM, Carneiro DG, Licursi de Oliveira L, Martins GF, Dantas Vanetti MC. The virulence of Salmonella Enteritidis in Galleria mellonella is improved by N-dodecanoyl-homoserine lactone. Microb Pathog 2021; 152:104730. [PMID: 33444697 DOI: 10.1016/j.micpath.2021.104730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
Salmonella is a food and waterborne pathogen responsible for outbreaks worldwide, and it can survive during passage through the stomach and inside host phagocytic cells. Virulence genes are required for infection and survival in macrophages, and some are under the regulation of the quorum sensing (QS) system. This study investigated the influence of the autoinducer 1 (AI-1), N-dodecanoyl-homoserine lactone (C12-HSL), on the virulence of Salmonella PT4 using Galleria mellonella as an infection model. Salmonella PT4 was grown in the presence and absence of C12-HSL under anaerobic conditions for 7 h, and the expression of rpoS, arcA, arcB, and invA genes was evaluated. After the inoculation of G. mellonella with the median lethal dose (LD50) of Salmonella PT4, the survival of bacteria inside the larvae and their health status (health index scoring) were monitored, as well as the pigment, nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT) production. Also, the hemocyte viability, the induction of caspase-3, and microtubule-associated light chain 3 (LC3) protein in hemocytes were evaluated. Salmonella PT4 growing in the presence of C12-HSL showed increased rpoS, arcA, arcB, and invA expression and promoted higher larvae mortality and worse state of health after 24 h of infection. The C12-HSL also increased the persistence of Salmonella PT4 in the hemolymph and in the hemocytes. The highest pigmentation, NO production, and antioxidant enzymes were verified in the larva hemolymph infected with Salmonella PT4 grown with C12-HSL. Hemocytes from larvae infected with Salmonella PT4 grown with C12-HSL showed lower viability and higher production of caspase-3 and LC3. Taken together, these findings suggest that C12-HSL could be involved in the virulence of Salmonella PT4.
Collapse
Affiliation(s)
- Leonardo Luiz de Freitas
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Deisy Guimarães Carneiro
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|