1
|
Di Rosa E, Durand AA, Provost C, Constant P. Epidemiology of Tomato Brown Rugose Fruit Virus in Commercial Greenhouses. PLANT DISEASE 2025; 109:633-637. [PMID: 39602582 DOI: 10.1094/pdis-09-24-1873-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The tomato brown rugose fruit virus (ToBRFV) poses a considerable threat to tomato production worldwide. Substantial experimental evidence supports the role of infected seeds as a contamination route, but the epidemiologic portrait of the virus has received less attention. This study reports the first survey of ToBRFV prevalence in commercial greenhouses. The aim was to examine the distribution of the virus in relation to greenhouse size and management practices in Québec (Canada). Plant samples collected at three production stages in 31 commercial greenhouses were subjected to ToBRFV detection and genome sequencing. The virus was detected in seven commercial greenhouses (11 positive samples out of 311 analyzed). Retrieved partial genome sequences formed a cluster with ToBRFV variants from Canada and Mexico, suggesting cross-border propagation through commercial trades. There was no link between greenhouse features and ToBRFV diagnosis, indicating that no specific profile is more susceptible to infection than others.
Collapse
Affiliation(s)
- Emilien Di Rosa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
| | - Audrey-Anne Durand
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
| | - Caroline Provost
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
- Centre de recherche agroalimentaire de Mirabel, Mirabel, QC J7N 2X8, Canada
| | - Philippe Constant
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
| |
Collapse
|
2
|
Zhao X, Wu J, Ma Z, Shi Y, Fang Z, Wu J, Yang X, Zhou X. Development and application of monoclonal antibody-based dot-ELISA and colloidal gold immunochromatographic strip for rapid, specific, and sensitive detection of tomato brown rugose fruit virus. J Virol Methods 2024; 323:114841. [PMID: 37939857 DOI: 10.1016/j.jviromet.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus that has become a great concern to tomato production industry. Due to the lack of resistant cultivars, precise detection of ToBRFV is essential to prevent the spread of ToBRFV. In this study, we produced highly sensitive and specific monoclonal antibodies against ToBRFV and established dot-enzyme-linked immunosorbent assay (dot-ELISA) and colloidal gold immunochromatographic strip (CGICS)-based methods for ToBRFV detection. These two methods could specifically detect ToBRFV without cross-reaction with seven tested tobamoviruses and three frequently occurring tomato-infecting viruses. Sensitivity analysis showed that the limit of detection of the established dot-ELISA and CGICS methods reached up to 1:6400 and 1:10,000 (w/v, g/mL) dilution of ToBRFV-infected tomato tissue, respectively. Further analyses using field-collected tomato foliar and fruit samples showed that the results obtained by dot-ELISA and CGICS were consistent with those obtained by reverse transcription polymerase chain reaction. The established methods here allow for specific, sensitive, and robust detection of ToBRFV, and will be helpful for precise monitoring and early warning of ToBRFV.
Collapse
Affiliation(s)
- Xinru Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiayu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ziyue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhu Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Singh S, Stainton D, Tzanetakis IE. Development of Rapid and Affordable Virus-Mimicking Artificial Positive Controls. PLANT DISEASE 2024; 108:30-34. [PMID: 37578360 DOI: 10.1094/pdis-06-23-1072-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A major bottleneck in the development of detection assays is the availability of positive controls. Their acquisition can be problematic, their maintenance is expensive, and without them, assays cannot be validated. Herein, we present a novel strategy for the development of virus-mimicking artificial positive controls (ViMAPCs). The time between design and application is less than 5 days, unlike alternatives which normally take several weeks to obtain and implement. The ViMAPCs provide a realistic representation of natural infection unlike alternatives and allow for an effortless recognition of laboratory-based contamination. The feasibility and adaptability of the strategy was evaluated using several RNA and DNA plant viruses. ViMAPCs can be used in diagnostics laboratories but also in the monitoring of pathogen outbreaks where rapid response is of utmost importance.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
4
|
Salem NM, Jewehan A, Aranda MA, Fox A. Tomato Brown Rugose Fruit Virus Pandemic. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:137-164. [PMID: 37268006 DOI: 10.1146/annurev-phyto-021622-120703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus. It was first reported in 2015 in Jordan in greenhouse tomatoes and now threatens tomato and pepper crops around the world. ToBRFV is a stable and highly infectious virus that is easily transmitted by mechanical means and via seeds, which enables it to spread locally and over long distances. The ability of ToBRFV to infect tomato plants harboring the commonly deployed Tm resistance genes, as well as pepper plants harboring the L resistance alleles under certain conditions, limits the ability to prevent damage from the virus. The fruit production and quality of ToBRFV-infected tomato and pepper plants can be drastically affected, thus significantly impacting their market value. Herein, we review the current information and discuss the latest areas of research on this virus, which include its discovery and distribution, epidemiology, detection, and prevention and control measures, that could help mitigate the ToBRFV disease pandemic.
Collapse
Affiliation(s)
- Nida' M Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan;
| | - Ahmad Jewehan
- Applied Plant Genomics Group, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Adrian Fox
- Fera Science, Sand Hutton, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Yilmaz S, Adkins S, Batuman O. Field-Portable, Rapid, and Low-Cost RT-LAMP Assay for the Detection of Tomato Chlorotic Spot Virus. PHYTOPATHOLOGY 2023; 113:567-576. [PMID: 36222536 DOI: 10.1094/phyto-08-22-0319-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tomato chlorotic spot virus (TCSV) is a highly destructive, thrips-transmitted, emerging orthotospovirus in various vegetable and ornamental crops. It is important to reduce the risk of spreading this virus by limiting the movement of infected plant materials to other geographic areas by utilizing point-of-care diagnostics. Current diagnostic assays for TCSV require costly lab equipment, skilled personnel, and electricity. Here, we report the development of a simple rechargeable battery-operated handwarmer-assisted reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay and demonstrate a step-by-step protocol to achieve in-field detection of TCSV. Under field conditions, handwarmer-assisted RT-LAMP can detect as little as 0.9 pg/μl of total RNA from TCSV-infected tomato plants in <35 min. When fully charged, the field-portable device can be used in six consecutive RT-LAMP detection assays, yielding test results for 96 individual samples. Dye-based colorimetric methods, including pH and metal ion indicators, were evaluated to eliminate laboratory-dependent LAMP visualization. Phenol red combined with hydroxynaphthol blue was adopted in the handwarmer-assisted RT-LAMP detection method to obtain a more robust color difference distinguishable by the naked eye. Overall, handwarmer-assisted RT-LAMP is a rapid, highly sensitive, and cost-effective diagnostic technique that can be used by nonspecialist personnel in the field, particularly in rural production areas lacking access to a diagnostic lab or constant electricity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida IFAS, Immokalee, FL 34142
| | - Scott Adkins
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Fort Pierce, FL 34945
| | - Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida IFAS, Immokalee, FL 34142
| |
Collapse
|
6
|
Jiang J, Feindel W, Harding M, Feindel D, Bajema S, Feng J. Development and Evaluation of a Loop-Mediated Isothermal Amplification (LAMP) Method for Detection of the Potato Powdery Scab Pathogen Spongospora subterranea. PLANT DISEASE 2023; 107:136-141. [PMID: 35748732 DOI: 10.1094/pdis-05-22-1000-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spongospora subterranea is the causal agent of powdery scab of potato (Solanum tuberosum), which can significantly reduce potato quality. In this study, we developed and evaluated a loop-mediated isothermal amplification (LAMP) method for the detection of S. subterranea. A set of LAMP primers named PS-LAMP was designed and tested for specificity and sensitivity. In the specificity test, in silico analysis using the NCBI Primer-BLAST tool indicated that PS-LAMP was specific to S. subterranea. The in vitro tests confirmed specificity, showing that PS-LAMP could produce positive signals from DNA isolated from each of three potato tubers with powdery scab symptoms but did not produce positive signals from DNA isolated from 38 nontarget plant pathogens. The sensitivity of PS-LAMP was tested on both gBlocks and DNA isolated from potato samples with powdery scab symptoms. On gBlocks, the lowest number of copies for a positive LAMP reaction was six, which was similar to results obtained via qPCR, but it was 10 times more sensitive than conventional PCR. On a DNA sample from S. subterranea-infected potato, the lowest amount of template DNA for a positive LAMP reaction was 2 pg, which was incomparable with the sensitivity of qPCR. Considering the convenience of the LAMP technique, as well as the high specificity and sensitivity, this assay can be very useful for plant pathology practitioners and diagnostic labs interested in rapid, accurate, and routine detection of S. subterranea and confirmation of powdery scab disease.
Collapse
Affiliation(s)
- Junye Jiang
- Potato Growers of Alberta, Edmonton, AB, T5Y 6H3, Canada
| | - Will Feindel
- Potato Growers of Alberta, Edmonton, AB, T5Y 6H3, Canada
| | - Michael Harding
- Crop Diversification Centre South, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Brooks, AB, T1R 1E6, Canada
| | - David Feindel
- Alberta Plant Health Lab, AAFRED, Edmonton, AB, T5Y 6H3, Canada
| | - Stacey Bajema
- Potato Growers of Alberta, Edmonton, AB, T5Y 6H3, Canada
| | - Jie Feng
- Alberta Plant Health Lab, AAFRED, Edmonton, AB, T5Y 6H3, Canada
| |
Collapse
|
7
|
Starkie ML, Fowler EV, Zhu X, Agarwal A, Rako L, Schneider IC, Schutze MK, Royer JE, Gopurenko D, Gillespie P, Blacket MJ. Loop-mediated isothermal amplification (LAMP) assays for detection of the New Guinea fruit fly Bactrocera trivialis (Drew) (Diptera: Tephritidae). Sci Rep 2022; 12:12602. [PMID: 35871253 PMCID: PMC9308764 DOI: 10.1038/s41598-022-16901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The cue-lure-responding New Guinea fruit fly, Bactroceratrivialis, poses a biosecurity risk to neighbouring countries, e.g., Australia. In trapping programs, lure caught flies are usually morphologically discriminated from non-target species; however, DNA barcoding can be used to confirm similar species where morphology is inconclusive, e.g., Bactrocerabreviaculeus and B.rufofuscula. This can take days—and a laboratory—to resolve. A quicker, simpler, molecular diagnostic assay would facilitate a more rapid detection and potential incursion response. We developed LAMP assays targeting cytochrome c oxidase subunit I (COI) and Eukaryotic Translation Initiation Factor 3 Subunit L (EIF3L); both assays detected B.trivialis within 25 min. The BtrivCOI and BtrivEIF3L assay anneal derivatives were 82.7 ± 0.8 °C and 83.3 ± 1.3 °C, respectively, detecting down to 1 × 101 copies/µL and 1 × 103 copies/µL, respectively. Each assay amplified some non-targets from our test panel; however notably, BtrivCOI eliminated all morphologically similar non-targets, and combined, the assays eliminated all non-targets. Double-stranded DNA gBlocks were developed as positive controls; anneal derivatives for the COI and EIF3L gBlocks were 84.1 ± 0.7 °C and 85.8 ± 0.2 °C, respectively. We recommend the BtrivCOI assay for confirmation of suspect cue-lure-trapped B.trivialis, with BtrivEIF3L used for secondary confirmation when required.
Collapse
|
8
|
Sarkes A, Yang Y, Dijanovic S, Fu H, Zahr K, Harding MW, Feindel D, Feng J. Detection of Xanthomonas translucens pv. undulosa, pv. translucens, and pv. secalis by Quantitative PCR. PLANT DISEASE 2022; 106:2876-2883. [PMID: 35442047 DOI: 10.1094/pdis-03-22-0574-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A probe-based quantitative PCR (qPCR) protocol was developed for detection and evaluation of the wheat bacterial leaf streak pathogen Xanthomonas translucens pathovar (pv.) undulosa. The protocol can also detect X. translucens pv. translucens and X. translucens pv. secalis but can't differentiate the three pathovars. When tested on nontarget DNA (i.e., from plant; bacteria other than X. translucens pv. undulosa, X. translucens pv. translucens, and X. translucens pv. secalis; and culture of microorganisms from wheat grains), the qPCR showed a high specificity. On purified X. translucens pv. undulosa DNA, the qPCR was more sensitive than a loop-mediated isothermal amplification assay. When DNA samples from a set of serial dilutions of X. translucens pv. undulosa cells were tested, the qPCR method could repeatedly generate quantification cycle (Cq) values from the dilutions containing ≥1,000 cells. Since 2 µl of the total 50 µl of DNA was used in one reaction, one qPCR reaction could detect the presence of the bacteria in samples containing as few as 40 bacterial cells. The qPCR could detect the bacteria from both infected grain and leaf tissues. For seed testing, a protocol for template preparation was standardized, which allowed one qPCR reaction to test DNA from the surface of one wheat grain. Thus, the qPCR system could detect X. translucens pv. undulosa, X. translucens pv. translucens, and/or X. translucens pv. secalis in samples where the bacteria had an average concentration of ≥40 cells per grain.
Collapse
Affiliation(s)
- Alian Sarkes
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Yalong Yang
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Snezana Dijanovic
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Heting Fu
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Kher Zahr
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Michael W Harding
- Crop Diversification Centre South, AAFRED, Brooks, AB, T1R 1E6, Canada
| | - David Feindel
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Jie Feng
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| |
Collapse
|
9
|
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. MOLECULAR PLANT PATHOLOGY 2022; 23:1262-1277. [PMID: 35598295 PMCID: PMC9366064 DOI: 10.1111/mpp.13229] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.
Collapse
Affiliation(s)
- Shaokang Zhang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Jonathan S. Griffiths
- London Research and Development CentreAgriculture and Agri‐Food CanadaVinelandOntarioCanada
| | - Geneviève Marchand
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
10
|
García-Estrada RS, Diaz-Lara A, Aguilar-Molina VH, Tovar-Pedraza JM. Viruses of Economic Impact on Tomato Crops in Mexico: From Diagnosis to Management-A Review. Viruses 2022; 14:1251. [PMID: 35746722 PMCID: PMC9228091 DOI: 10.3390/v14061251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Tomato is the most economically important vegetable crop worldwide and the second most important for Mexico. However, viral diseases are among the main limiting factors that affect the productivity of this crop, causing total losses in some cases. This review provides key information and findings on the symptoms, distribution, transmission, detection, and management of diseases caused by viruses of major importance in tomato crops in Mexico. Currently, about 25 viruses belonging to nine different families have been reported infecting tomato in Mexico, but not all of them cause economically significant diseases. Viruses of economic importance include tomato brown rugose fruit virus (ToBRFV), tomato spotted wilt virus (TSWV), tomato yellow leaf curl virus (TYLCV), pepino mosaic virus (PepMV), and tomato marchitez virus (ToMarV). The topics discussed here will provide updated information about the status of these plant viruses in Mexico as well as diverse management strategies that can be implemented according to the specific circumstances of each viral pathosystem. Additionally, a list of tomato-affecting viruses not present in Mexico that are continuous threats to the crop health is included.
Collapse
Affiliation(s)
- Raymundo Saúl García-Estrada
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| | - Alfredo Diaz-Lara
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Vivian Hayde Aguilar-Molina
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| |
Collapse
|
11
|
Tahzima R, Foucart Y, Peusens G, Reynard JS, Massart S, Beliën T, De Jonghe K. An Advanced One-Step RT-LAMP for Rapid Detection of Little cherry virus 2 Combined with High-Throughput Sequence-Based Phylogenomics Reveal Divergent Flowering Cherry Isolates. PLANT DISEASE 2022; 106:835-845. [PMID: 34546772 DOI: 10.1094/pdis-03-21-0677-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Little cherry virus 2 (LChV-2, genus Ampelovirus) is considered to be the main causal agent of the economically damaging little cherry disease, which can only be controlled by removal of infected trees. The widespread viral disease of sweet cherry (Prunus avium L.) is affecting the survival of long-standing orchards in North America and Europe, hence the dire need for an early and accurate diagnosis to establish a sound disease control strategy. The endemic presence of LChV-2 is mainly confirmed using laborious time-consuming reverse-transcription (RT-PCR). A rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting a conserved region of the coat protein was developed and compared with conventional RT-PCR for the specific detection of LChV-2. This affordable assay, combined with a simple RNA extraction, deploys desirable characteristics such as higher ability for faster (<15 min), more analytically sensitive (100-fold), and robust broad-range diagnosis of LChV-2 isolates from sweet cherry, ornamental flowering cherry displaying heterogenous viral etiology and, for the first time, newly identified potential insect vectors. Moreover, use of Sanger and total RNA high-throughput sequencing as complementary metaviromics approaches confirmed the LChV-2 RT-LAMP detection of divergent LChV-2 isolates in new hosts and the relationship of their whole-genome was exhaustively inferred using maximum-likelihood phylogenomics. This entails unprecedented critical understanding of a novel evolutionary clade further expanding LChV-2 viral diversity. In conclusion, this highly effective diagnostic platform facilitates strategical support for early in-field testing to reliably prevent dissemination of new LChV-2 outbreaks from propagative plant stocks or newly postulated insect vectors. Validated results and major advantages are herein thoroughly discussed, in light of the knowledge required to increase the potential accuracy of future diagnostics and the essential epidemiological considerations to proactively safeguard cherries and Prunus horticultural crop systems from little cherry disease.
Collapse
Affiliation(s)
- Rachid Tahzima
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
- Department of Integrated and Urban Phytopathology, Gembloux Agro-BioTech, University of Liège, 5030 Gembloux, Belgium
| | - Yoika Foucart
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Gertie Peusens
- Department of Zoology, Proefcentrum Fruitteelt vzw, 3800 Sint-Truiden, Belgium
| | | | - Sébastien Massart
- Department of Integrated and Urban Phytopathology, Gembloux Agro-BioTech, University of Liège, 5030 Gembloux, Belgium
| | - Tim Beliën
- Department of Zoology, Proefcentrum Fruitteelt vzw, 3800 Sint-Truiden, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| |
Collapse
|
12
|
Kim JH, Lee S, Park ER, Jang WC. Development of a highly sensitive and rapid detection method for Pea enation mosaic virus using loop-mediated isothermal amplification assay. J Virol Methods 2022; 300:114427. [PMID: 34902459 DOI: 10.1016/j.jviromet.2021.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
The Pea enation mosaic virus (PEMV) has infected plants in the family Leguminosae such as pea, chickpea, faba bean, and lentil plants worldwide that the virus can be transmitted by sap, aphids, and seeds. Among the damages that PEMV disease cause in plants are reduced crop productivity, severely misshapen pods, wart-like outgrowths or proliferation on the surface. Previously, enzyme-linked immunosorbent assay (ELISA), reverse transcription (RT)-nested polymerase chain reaction (PCR), and real-time PCR had been used to detect PEMV. However, these methods are time-consuming and require specific equipments. For this reason, the development of a highly specific and sensitive detection method has become necessary. In this study, a new method for PEMV-1 using the loop-mediated isothermal amplification (LAMP) assay has been developed with specific primer sets as inner- and outer primers. Results showed PEMV-1 has been successfully detected that LAMP could confirm a diluted PEMV-1 up to 10-6 cDNA. LAMP is about 10,000 times more sensitive than the RT-nested PCR and/or real-time PCR. Moreover, the processing time of the LAMP was decreased 3 h than RT-nested PCR. Although future validation will be required to confirm enablement in the field area, this study provides a valuable method to identify PEMV-1 that could offer some advantages including rapid detection, high specificity and high sensitivity than others.
Collapse
Affiliation(s)
- Jin-Ho Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam 31116, Republic of Korea; Department of Chemistry, College of Science and Engineering, Dankook University, Chungnam 31116, Republic of Korea
| | - Siwon Lee
- R&D Team, LSLK Co. Ltd., Gimpo, Gyeonggi 10111, Republic of Korea
| | - Eung-Roh Park
- Water Supply & Sewerage Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Won-Cheoul Jang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam 31116, Republic of Korea; Department of Chemistry, College of Science and Engineering, Dankook University, Chungnam 31116, Republic of Korea.
| |
Collapse
|
13
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
14
|
Bernabé-Orts JM, Torre C, Méndez-López E, Hernando Y, Aranda MA. New Resources for the Specific and Sensitive Detection of the Emerging Tomato Brown Rugose Fruit Virus. Viruses 2021; 13:v13091680. [PMID: 34578261 PMCID: PMC8473139 DOI: 10.3390/v13091680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Plant viruses can evolve towards new pathogenic entities that may eventually cause outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing significant losses in tomato crops. While new resistances are deployed, the only means of control is the implementation of effective prevention and eradication strategies. For this purpose, in this work, we have designed, assessed, and compared an array of tests for the specific and sensitive detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR (RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed, and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV, and one set that works as an internal control. Finally, we compared all of these methods by employing a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Covadonga Torre
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain;
| | - Yolanda Hernando
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain;
- Correspondence:
| |
Collapse
|
15
|
Bernabé-Orts JM, Torre C, Méndez-López E, Hernando Y, Aranda MA. New Resources for the Specific and Sensitive Detection of the Emerging Tomato Brown Rugose Fruit Virus. Viruses 2021; 13:v13091680. [PMID: 34578261 DOI: 10.1094/phytofr-08-21-0053-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 05/24/2023] Open
Abstract
Plant viruses can evolve towards new pathogenic entities that may eventually cause outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing significant losses in tomato crops. While new resistances are deployed, the only means of control is the implementation of effective prevention and eradication strategies. For this purpose, in this work, we have designed, assessed, and compared an array of tests for the specific and sensitive detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR (RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed, and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV, and one set that works as an internal control. Finally, we compared all of these methods by employing a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Covadonga Torre
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
16
|
Alon DM, Hak H, Bornstein M, Pines G, Spiegelman Z. Differential Detection of the Tobamoviruses Tomato Mosaic Virus (ToMV) and Tomato Brown Rugose Fruit Virus (ToBRFV) Using CRISPR-Cas12a. PLANTS (BASEL, SWITZERLAND) 2021; 10:1256. [PMID: 34205558 PMCID: PMC8234260 DOI: 10.3390/plants10061256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato industry. Specific CRISPR RNAs (crRNAs) were designed to detect either ToBRFV or the closely related tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15-30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method can enable the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of tobamoviruses. A future combination of this approach with isothermal amplification could provide a platform for efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens.
Collapse
Affiliation(s)
- Dan Mark Alon
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Menachem Bornstein
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Gur Pines
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Ziv Spiegelman
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
17
|
Development and Validation of a Loop-Mediated Isothermal Amplification Diagnostic Method to Detect the Quarantine Potato Pale Cyst Nematode, Globodera pallida. Pathogens 2021; 10:pathogens10060744. [PMID: 34204749 PMCID: PMC8231653 DOI: 10.3390/pathogens10060744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The potato cyst nematode (PCN) Globodera pallida has acquired significant importance throughout Europe due to its nefarious effects on potato production. Rapid and reliable diagnosis of PCN is critical during the surveillance programs and for the implementation of control measures. Molecular DNA-based methods are available, but they require expensive laboratory facilities, equipment and trained technicians. Moreover, there is an additional need of time for sample shipment and testing. In this work, we have developed a new and simple assay which reliably discriminates G. pallida from other cyst nematodes in less than 40 min. This assay may be applied either on cysts or juveniles with the ability to detect a single juvenile of G. pallida in a sample of at least 40 juveniles of the non-target species G. rostochiensis. This test should be a tool to improve the performance of the laboratory and has the potential to be performed on-site.
Collapse
|
18
|
Rizzo D, Da Lio D, Panattoni A, Salemi C, Cappellini G, Bartolini L, Parrella G. Rapid and Sensitive Detection of Tomato Brown Rugose Fruit Virus in Tomato and Pepper Seeds by Reverse Transcription Loop-Mediated Isothermal Amplification Assays (Real Time and Visual) and Comparison With RT-PCR End-Point and RT-qPCR Methods. Front Microbiol 2021; 12:640932. [PMID: 33967980 PMCID: PMC8096992 DOI: 10.3389/fmicb.2021.640932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) represents an emerging viral threat to the productivity of tomato and pepper protected cultivation worldwide. This virus has got the status of quarantine organism in the European Union (EU) countries. In particular, tomato and pepper seeds will need to be free of ToBRFV before entering the EU and before coming on the market. Thus, lab tests are needed. Here, we develop and validate a one-step reverse transcription LAMP platform for the detection of ToBRFV in tomato and pepper leaves, by real-time assay [reverse transcription loop-mediated isothermal amplification (RT-LAMP)] and visual screening (visual RT-LAMP). Moreover, these methods can also be applied successfully for ToBRFV detection in tomato and pepper seeds. The diagnostic specificity and sensitivity of both RT-LAMP and visual RT-LAMP are both 100%, with a detection limit of nearly 2.25 fg/μl, showing the same sensitivity as RT-qPCR Sybr Green, but 100 times more sensitive than end-point RT-PCR diagnostic methods. In artificially contaminated seeds, the proposed LAMP assays detected ToBRFV in 100% of contaminated seed lots, for up to 0.025–0.033% contamination rates in tomato and pepper, respectively. Our results demonstrate that the proposed LAMP assays are simple, inexpensive, and sensitive enough for the detection of ToBRFV, especially in seed health testing. Hence, these methods have great potential application in the routine detection of ToBRFV, both in seeds and plants, reducing the risk of epidemics.
Collapse
Affiliation(s)
- Domenico Rizzo
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Pistoia, Italy
| | - Daniele Da Lio
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Pisa, Italy
| | - Alessandra Panattoni
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Pisa, Italy
| | - Chiara Salemi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Pisa, Italy
| | - Giovanni Cappellini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Pistoia, Italy
| | - Linda Bartolini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Plant Protection Service of Tuscany, Pistoia, Italy
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of National Research Council (IPSP-CNR), Portici, Italy
| |
Collapse
|
19
|
Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:v13030412. [PMID: 33807625 PMCID: PMC7999175 DOI: 10.3390/v13030412] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Collapse
|
20
|
Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. PLANTS 2020; 9:plants9111615. [PMID: 33233807 PMCID: PMC7699967 DOI: 10.3390/plants9111615] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a highly infectious virus, that is becoming a threat to tomato production worldwide. In this work we evaluated the localization of ToBRFV particles in tomato seeds, its seed transmission rate and efficacy of disinfection, and the effects of different thermal- and chemical-based treatments on ToBRFV-infected seeds' germination. Analyses demonstrated that ToBRFV was located in the seed coat, sometime in the endosperm, but never in the embryo; its transmission from infected seeds to plantlets occurs by micro-lesions during the germination. The ToBRFV seed transmission rate was 2.8% in cotyledons and 1.8% in the third true leaf. Regarding the different disinfection treatments, they returned 100% of germination at 14 days post-treatment (dpt), except for the treatment with 2% hydrochloric acid +1.5% sodium hypochlorite for 24 h, for which no seed germinated after 14 dpt. All treatments have the ability to inactivate ToBRFV, but in six out of seven treatments ToBRFV was still detectable by RT-qPCR. These results raise many questions about the correct way to carry out diagnosis at customs. To our knowledge, this is the first study on the effective localization of ToBRFV particles in seeds.
Collapse
|