1
|
Liu A, Hou X, Zhang J, Wang W, Dong X, Li J, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Tissue-Specific and Time-Dependent Expressions of PC4s in Bay Scallop ( Argopecten irradians irradians) Reveal Function Allocation in Thermal Response. Genes (Basel) 2022; 13:genes13061057. [PMID: 35741819 PMCID: PMC9223095 DOI: 10.3390/genes13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Transcriptional coactivator p15 (PC4) encodes a structurally conserved but functionally diverse protein that plays crucial roles in RNAP-II-mediated transcription, DNA replication and damage repair. Although structures and functions of PC4 have been reported in most vertebrates and some invertebrates, the PC4 genes were less systematically identified and characterized in the bay scallop Argopecten irradians irradians. In this study, five PC4 genes (AiPC4s) were successfully identified in bay scallops via whole-genome scanning through in silico analysis. Protein structure and phylogenetic analyses of AiPC4s were conducted to determine the identities and evolutionary relationships of these genes. Expression levels of AiPC4s were assessed in embryos/larvae at all developmental stages, in healthy adult tissues and in different tissues (mantles, gills, hemocytes and hearts) being processed under 32 °C stress with different time durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Spatiotemporal expression profiles of AiPC4s suggested the functional roles of the genes in embryos/larvae at all developmental stages and in healthy adult tissues in bay scallop. Expression regulations (up- and down-) of AiPC4s under high-temperature stress displayed both tissue-specific and time-dependent patterns with function allocations, revealing that AiPC4s performed differentiated functions in response to thermal stress. This work provides clues of molecular function allocation of PC4 in scallops in response to thermal stress and helps in illustrating how marine bivalves resist elevated seawater temperature.
Collapse
Affiliation(s)
- Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Jianshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82031969
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Walters HA, Temesvari LA. Target acquired: transcriptional regulators as drug targets for protozoan parasites. Int J Parasitol 2021; 51:599-611. [PMID: 33722681 PMCID: PMC8169582 DOI: 10.1016/j.ijpara.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022]
Abstract
Protozoan parasites are single-celled eukaryotic organisms that cause significant human disease and pose a substantial health and socioeconomic burden worldwide. They are responsible for at least 1 million deaths annually. The treatment of such diseases is hindered by the ability of parasites to form latent cysts, develop drug resistance, or be transmitted by insect vectors. Additionally, these pathogens have developed complex mechanisms to alter host gene expression. The prevalence of these diseases is predicted to increase as climate change leads to the augmentation of ambient temperatures, insect ranges, and warm water reservoirs. Therefore, the discovery of novel treatments is necessary. Transcription factors lie at the junction of multiple signalling pathways in eukaryotes and aberrant transcription factor function contributes to the progression of numerous human diseases including cancer, diabetes, inflammatory disorders and cardiovascular disease. Transcription factors were previously thought to be undruggable. However, due to recent advances, transcription factors now represent appealing drug targets. It is conceivable that transcription factors, and the pathways they regulate, may also serve as targets for anti-parasitic drug design. Here, we review transcription factors and transcriptional modulators of protozoan parasites, and discuss how they may be useful in drug discovery. We also provide information on transcription factors that play a role in stage conversion of parasites, TATA box-binding proteins, and transcription factors and cofactors that participate with RNA polymerases I, II and III. We also highlight a significant gap in knowledge in that the transcription factors of some of parasites have been under-investigated. Understanding parasite transcriptional pathways and how parasites alter host gene expression will be essential in discovering innovative drug targets.
Collapse
Affiliation(s)
- H A Walters
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, United States; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, United States
| | - L A Temesvari
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, United States; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|