1
|
Abraham AB, Panneerselvam M, Ebenezer C, Costa LT, Vijay Solomon R. A theoretical study on radical scavenging activity of phenolic derivatives naturally found within Alternaria alternata extract. Org Biomol Chem 2024; 22:2059-2074. [PMID: 38363153 DOI: 10.1039/d3ob02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The increasing oxidative stress demands potential chemical compounds derived from natural resources with good antioxidant activity to overcome adverse health issues. In this context, we investigated the antioxidant properties of four dibenzopyrone phenolic compounds obtained from the endophytic fungus Alternaria alternata: altenusin, altenusin B, alterlactone, and dehydroaltenusin using DFT calculations. Our investigation focused on understanding the structure-antioxidant property relationship. It delved into probing the activity by modelling the antioxidant mechanisms. The computed transition states and thermochemical parameters, along with the structural attributes, indicate that altenusin B has good antioxidant efficacy among the four compounds, and it follows the HAT mechanism in an aqueous phase. Remarkably, our findings indicate that altenusin B exhibits potent HOO˙ radical scavenging properties, characterized by the computed high rate constant. The molecular docking studies of these compounds with the pro-oxidant enzyme xanthine oxidase (XO) gave insights into the binding modes of the compounds in the protein environment. Furthermore, molecular dynamics (MD) simulations were employed to study the interaction and stability of the compounds inside the XO enzyme. Our exploration sheds light on the radical scavenging potential of the -OH sites and the underlying antioxidant mechanisms that underpin the compounds' effective antioxidant potential.
Collapse
Affiliation(s)
- Alen Binu Abraham
- Department of Chemistry, St Stephen's College, Affiliated to the University of Delhi, Delhi - 110007, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| | - Luciano T Costa
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| |
Collapse
|
2
|
Mizoguchi A, Higashiyama M, Wada A, Nishimura H, Tomioka A, Ito S, Tanemoto R, Nishii S, Inaba K, Sugihara N, Hanawa Y, Horiuchi K, Okada Y, Kurihara C, Akita Y, Narimatu K, Komoto S, Tomita K, Kawauchi S, Sato S, Hokari R. Visceral hypersensitivity induced by mild traumatic brain injury via the corticotropin-releasing hormone receptor: An animal model. Neurogastroenterol Motil 2023; 35:e14634. [PMID: 37357384 DOI: 10.1111/nmo.14634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Mild blast-induced traumatic brain injury (bTBI) induces various gut symptoms resembling human irritable bowel syndrome (IBS) as one of mental and behavioral disorders. However, the underlying mechanisms remain unclear. We investigated whether the extremely localized brain impact extracranially induced by laser-induced shock wave (LISW) evoked IBS-like phenomenon including visceral hypersensitivity and intestinal hyperpermeability in rats. METHODS The rats were subjected to LISW on the scalp to shock the entire brain. Visceral hypersensitivity was evaluated by the threshold pressure of abdominal withdrawal reflex (AWR) using a colorectal distension test. Permeability was evaluated by the concentration of penetrating FITC-dextran from intestine and the mRNA expression levels of tight junction family proteins. Involvement of corticotropin-releasing factor receptor (CRFR) 1 and 2 was examined by evaluating mRNA expression and modulating CRFR function with agonist, recombinant CRF (10 μg/kg), and antagonist, astressin (33 μg/kg). High-throughput sequencing of the gut microbiota was performed by MiSeqIII instrument and QIIME tool. KEY RESULTS The thresholds of the AWR were significantly lowered after LISW. Permeability was increased in small intestine by LISW along with decreased expression of tight junction ZO-1. LISW significantly increased CRFR1 expression and decreased CRFR2 expression. Visceral hypersensitivity was significantly aggravated by CRFR agonist and suppressed by CRFR antagonist. The α- and β-diversity of the fecal microbiota was altered after LISW. CONCLUSIONS AND INFERENCES LISW provoked visceral hypersensitivity, small intestinal hyperpermeability, altered expression of CRFRs and changes in the microbiota, suggesting that genuine bTBI caused by LISW can induce a pathophysiology comparable to that of human IBS.
Collapse
Affiliation(s)
- Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Hiroyuki Nishimura
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshihiro Akita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuyuki Narimatu
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
3
|
Khalili H, Abdollahifard S, Niakan A, Aryaie M. The effect of Vitamins C and E on clinical outcomes of patients with severe traumatic brain injury: A propensity score matching study. Surg Neurol Int 2022; 13:548. [PMID: 36600753 PMCID: PMC9805612 DOI: 10.25259/sni_932_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background The aim of this study was to assess the effect of Vitamins C and E on mortality, intensive care unit (ICU) length of stay, and Glasgow Outcome Scale-Extended (GOS-E) score of traumatic brain injury (TBI) patients. Methods Using data from records of patients in a retrospective cohort study, we included 1321 TBI patients, 269 treated and 1052 untreated, aged over 18 years with information on exposure (i.e., Vitamins C and E) and confounders. Age, Glasgow Coma Scale, pupil status, Rotterdam classification, blood sugar, blood pressure, international normalized ratio, and comorbidity of patients were considered as the confounding factors. Endpoints were GOS-E on follow-up, mortality, and ICU length of stay. Propensity score matching was performed to adjust the confounders. Results Based on the average treatment effect estimates, the use of Vitamins C and E reduced the risk of mortality (risk difference [RD]: -0.07; 95% confidence interval [CI]: -0.14--0.003) and reduced the length of ICU stay (RD -1.77 95% CI:-3.71-0.16). Furthermore, our results showed that GOS-E was improved significantly (RD: 0.09, 95% CI : 0.03-0.16). Conclusion Our study suggests that using Vitamins C and E could decrease mortality and length of ICU stay and improve the GOS-E score and functions of the patients with severe TBI. As they are safe and inexpensive medications, they can be used in routine practice in ICUs to improve the outcomes of TBI patients.
Collapse
Affiliation(s)
- Hosseinali Khalili
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Aryaie
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Corresponding author: Mohammad Aryaie, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
5
|
Yi Y, Wu M, Zhou X, Xiong M, Tan Y, Yu H, Liu Z, Wu Y, Zhang Q. Ascorbic acid 2-glucoside preconditioning enhances the ability of bone marrow mesenchymal stem cells in promoting wound healing. Stem Cell Res Ther 2022; 13:119. [PMID: 35313962 PMCID: PMC8935805 DOI: 10.1186/s13287-022-02797-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Background Nowadays, wound is associated with a complicated repairing process and still represents a significant biomedical burden worldwide. Bone marrow mesenchymal stem cells (BMSCs) possess multidirectional differentiation potential and secretory function, emerging as potential cellular candidates in treating wounds. Ascorbic acid 2-glucoside (AA2G) is a well-known antioxidant and its function in BMSC-promoting wound healing is worth exploring. Methods The in vitro cell proliferation, migration, and angiogenesis of BMSCs and AA2G-treated BMSCs were detected by flow cytometry, EDU staining, scratch assay, transwell assay, and immunofluorescence (IF). Besides, the collagen formation effect of AA2G-treated BMSCs conditioned medium (CM) on NIH-3T3 cells was evaluated by hydroxyproline, qRT-PCR and IF staining detection. Next, in the wound healing mouse model, the histological evaluation of wound tissue in PBS, BMSCs, and AA2G-treated BMSCs group were further investigated. Lastly, western blot and ELISA were used to detect the expression levels of 5-hmc, TET2 and VEGF protein, and PI3K/AKT pathway activation in BMSCs treated with or without AA2G. Results The in vitro results indicated that AA2G-treated BMSCs exhibited stronger proliferation and improved the angiogenesis ability of vascular endothelial cells. In addition, the AA2G-treated BMSCs CM enhanced migration and collagen formation of NIH-3T3 cells. In vivo, the AA2G-treated BMSCs group had a faster wound healing rate and a higher degree of vascularization in the new wound, compared with the PBS and BMSCs group. Moreover, AA2G preconditioning might enhance the demethylation process of BMSCs by regulating TET2 and up-regulating VEGF expression by activating the PI3K/AKT pathway. Conclusions AA2G-treated BMSCs promoted wound healing by promoting angiogenesis and collagen deposition, thereby providing a feasible strategy to reinforce the biofunctionability of BMSCs in treating wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02797-0.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaomei Zhou
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Honghao Yu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Kangisser L, Tan E, Bellomo R, Deane AM, Plummer MP. Neuroprotective Properties of Vitamin C: A Scoping Review of Pre-Clinical and Clinical Studies. J Neurotrauma 2021; 38:2194-2205. [PMID: 33544035 DOI: 10.1089/neu.2020.7443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is a need for novel neuroprotective therapies. We aimed to review the evidence for exogenous vitamin C as a neuroprotective agent. MEDLINE, Embase, and Cochrane library databases were searched from inception to May 2020. Pre-clinical and clinical reports evaluating vitamin C for acute neurological injury were included. Twenty-two pre-clinical and 11 clinical studies were eligible for inclusion. Pre-clinical studies included models of traumatic and hypoxic brain injury, subarachnoid and intracerebral hemorrhage, and ischemic stroke. The median [IQR] maximum daily dose of vitamin C in animal studies was 120 [50-500] mg/kg. Twenty-one animal studies reported improvements in biomarkers, functional outcome, or both. Clinical studies included single reports in neonatal hypoxic encephalopathy, traumatic brain injury, and subarachnoid hemorrhage and eight studies in ischemic stroke. The median maximum daily dose of vitamin C was 750 [500-1000] mg, or ∼10 mg/kg for an average-size adult male. Apart from one case series of intracisternal vitamin C administration in subarachnoid hemorrhage, clinical studies reported no patient-centered benefit. Although pre-clinical trials suggest that exogenous vitamin C improves biomarkers of neuroprotection, functional outcome, and mortality, these results have not translated to humans. However, clinical trials used approximately one tenth of the vitamin C dose of animal studies.
Collapse
Affiliation(s)
- Lauren Kangisser
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Elinor Tan
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam M Deane
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark P Plummer
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Jitsu M, Niwa K, Suzuki G, Obara T, Iwama Y, Hagisawa K, Takahashi Y, Matsushita Y, Takeuchi S, Nawashiro H, Sato S, Kawauchi S. Behavioral and Histopathological Impairments Caused by Topical Exposure of the Rat Brain to Mild-Impulse Laser-Induced Shock Waves: Impulse Dependency. Front Neurol 2021; 12:621546. [PMID: 34093390 PMCID: PMC8177106 DOI: 10.3389/fneur.2021.621546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
Although an enormous number of animal studies on blast-induced traumatic brain injury (bTBI) have been conducted, there still remain many uncertain issues in its neuropathology and mechanisms. This is partially due to the complex and hence difficult experimental environment settings, e.g., to minimize the effects of blast winds (tertiary mechanism) and to separate the effects of brain exposure and torso exposure. Since a laser-induced shock wave (LISW) is free from dynamic pressure and its energy is spatially well confined, the effects of pure shock wave exposure (primary mechanism) solely on the brain can be examined by using an LISW. In this study, we applied a set of four LISWs in the impulse range of 15–71 Pa·s to the rat brain through the intact scalp and skull; the interval between each exposure was ~5 s. For the rats, we conducted locomotor activity, elevated plus maze and forced swimming tests. Axonal injury in the brain was also examined by histological analysis using Bodian silver staining. Only the rats with exposure at higher impulses of 54 and 71 Pa·s showed significantly lower spontaneous movements at 1 and 2 days post-exposure by the locomotor activity test, but after 3 days post-exposure, they had recovered. At 7 days post-exposure, however, these rats (54 and 71 Pa·s) showed significantly higher levels of anxiety-related and depression-like behaviors by the elevated plus maze test and forced swimming test, respectively. To the best of the authors' knowledge, there have been few studies in which a rat model showed both anxiety-related and depression-like behaviors caused by blast or shock wave exposure. At that time point (7 days post-exposure), histological analysis showed significant decreases in axonal density in the cingulum bundle and corpus callosum in impulse-dependent manners; axons in the cingulum bundle were found to be more affected by a shock wave. Correlation analysis showed a statistically significant correlation between the depression like-behavior and axonal density reduction in the cingulum bundle. The results demonstrated the dependence of behavior deficits and axonal injury on the shock wave impulse loaded on the brain.
Collapse
Affiliation(s)
- Motoyuki Jitsu
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Katsuki Niwa
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Go Suzuki
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Takeyuki Obara
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Yukiko Iwama
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Kohsuke Hagisawa
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | - Yukihiro Takahashi
- Military Medicine Research Unit, Japan Ground Self Defense Force, Tokyo, Japan
| | | | - Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nawashiro
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Japan
| |
Collapse
|
8
|
Miyai K, Kawauchi S, Kato T, Yamamoto T, Mukai Y, Yamamoto T, Sato S. Axonal damage and behavioral deficits in rats with repetitive exposure of the brain to laser-induced shock waves: Effects of inter-exposure time. Neurosci Lett 2021; 749:135722. [PMID: 33592306 DOI: 10.1016/j.neulet.2021.135722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Much attention has been given to effects of repeated exposure to a shock wave as a possible factor causing severe higher brain dysfunction and post-traumatic stress disorder (PTSD)-like symptoms in patients with mild to moderate blast-induced traumatic brain injury (bTBI). However, it is unclear how the repeated exposure and the inter-exposure time affect the brain. In this study, we topically applied low-impulse (∼54 Pa·s) laser-induced shock waves (LISWs; peak pressure, ∼75.7 MPa) to the rat brain once or twice with the different inter-exposure times (15 min, 1 h, 3 h, 24 h and 7 days) and examined anxiety-related behavior and motor dysfunction in the rats as well as expression of β-amyloid precursor protein (APP) as an axonal damage marker in the brains of the rats. The averaged APP expression scores for the rat brains doubly-exposed to LISWs with inter-exposure times from 15 min to 24 h were significantly higher than those for rats with a single exposure (P < 0.0001). The rats with double exposure to LISWs showed significantly more frequent anxiety-related behavior (P < 0.05) and poorer motor function (P < 0.01) than those of rats with a single exposure. When the inter-exposure time was extended to 7 days, however, the rats showed no significant differences either in axonal damage score or level of motor dysfunction. The results suggest that the cumulative effects of shock wave-related brain injury can be avoided with an appropriate inter-exposure time. However, clinical bTBI occurs in much more complex environments than those in our model. Further study considering other factors, such as the effects of acceleration, is needed to know the clinically-relevant, necessary inter-exposure time.
Collapse
Affiliation(s)
- Kosuke Miyai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Satoko Kawauchi
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Tamaki Kato
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Yasuo Mukai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Taisuke Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan.
| |
Collapse
|
9
|
Liu Y, Liu C, Li J. Comparison of Vitamin C and Its Derivative Antioxidant Activity: Evaluated by Using Density Functional Theory. ACS OMEGA 2020; 5:25467-25475. [PMID: 33043226 PMCID: PMC7542841 DOI: 10.1021/acsomega.0c04318] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 05/11/2023]
Abstract
Vitamin C (VC) is an essential antioxidant, but its application is limited because of its unstable chemical properties. Hence, a variety of VC derivatives have emerged in practical antioxidant applications. To explore the relationship between the antioxidant properties and the chemical structures of vitamin C and its derivatives, density functional theory (DFT) was used in this work to calculate the reaction enthalpies of the mechanisms related to radical scavenging activity. The structures were optimized at the B3LYP-D3(BJ)/6-31G* level of theory. Single point calculations (SPE) were performed at the PWPB95-D3 (BJ)/def2-QZVPP level. To estimate the solvent effect on antioxidant properties, the SMD (solvation model based on density) method was used. The results showed that in the process of optimizing the chemical structure of vitamin C, the antioxidant capacity of its derivatives decreased slightly in aqueous solvents. In the calculation process, it is also found that in the choice of antioxidant mechanism, these compounds are more inclined to the hydrogen atom transfer (HAT) mechanism, and from the chemical structure point of view, the double bond of the lactone ring is essential for its free radical scavenging activity. In general, it is necessary to continue to optimize the structure of VC to obtain derivatives with better oxidation resistance and more practical value.
Collapse
Affiliation(s)
- Yuyang Liu
- Department
of Orthopedics, Shengjing Hospital of China
Medical University, Shenyang 110004, China
| | - Chuanqun Liu
- School
of Energy and Power Engineering, Northeast
Electric Power University, Jilin 132000, China
| | - Jianjun Li
- Department
of Orthopedics, Shengjing Hospital of China
Medical University, Shenyang 110004, China
- . Phone: +86-18940259895
| |
Collapse
|