1
|
Schleimer A, Frantz AC, Richart L, Mehnert J, Semiadi G, Rode‐Margono J, Mittelbronn M, Young S, Drygala F, Wirdateti. Conservation prioritisation through genomic reconstruction of demographic histories applied to two endangered suids in the Malay Archipelago. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- Anna Schleimer
- Musée National d'Histoire Naturelle Luxembourg Luxembourg
| | | | - Lorraine Richart
- National Center of Pathology (NCP) Laboratoire National de Santé (LNS) Dudelange Luxembourg
- Luxembourg Center of Neuropathology (LCNP) Dudelange Luxembourg
- Department of Oncology (DONC) Luxembourg Institute of Health (LIH) Luxembourg Luxembourg
- Doctoral School in Science and Engineering (DSSE) 25 University of Luxembourg (UL) Esch‐sur‐Alzette Luxembourg
| | - Jörg Mehnert
- Association for Nature and Biodiversity (ANB) Frankfurt am Main Germany
| | - Gono Semiadi
- Research Centre for Applied Zoology National Research and Innovation Agency Cibinong Indonesia
| | | | - Michel Mittelbronn
- National Center of Pathology (NCP) Laboratoire National de Santé (LNS) Dudelange Luxembourg
- Luxembourg Center of Neuropathology (LCNP) Dudelange Luxembourg
- Department of Oncology (DONC) Luxembourg Institute of Health (LIH) Luxembourg Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Department of Life Sciences and Medicine (DLSM) University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Stuart Young
- The North of England Zoological Society/Chester Zoo Upton‐by‐Chester Chester UK
| | - Frank Drygala
- Musée National d'Histoire Naturelle Luxembourg Luxembourg
- Association for Nature and Biodiversity (ANB) Frankfurt am Main Germany
| | | |
Collapse
|
2
|
Pinkham R, Koon KK, To J, Chan J, Vial F, Gomm M, Eckery DC, Massei G. Long-term effect of a GnRH-based immunocontraceptive on feral cattle in Hong Kong. PLoS One 2022; 17:e0272604. [PMID: 35976896 PMCID: PMC9385044 DOI: 10.1371/journal.pone.0272604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing human-wildlife conflicts worldwide are driving the need for multiple solutions to reducing “problem” wildlife and their impacts. Fertility control is advocated as a non-lethal tool to manage free-living wildlife and in particular to control iconic species. Injectable immunocontraceptives, such as GonaCon, stimulate the immune system to produce antibodies against the gonadotrophin-releasing hormone (GnRH), which in turn affects the release of reproductive hormones in mammals. Feral cattle (Bos indicus or Bos taurus) in Hong Kong are an iconic species whose numbers and impacts on human activities have increased over the last decade. Previous studies have proven that a primer vaccination and booster dose of GonaCon in female cattle are safe and effective in reducing pregnancy levels one year post-treatment. The aims of this project were 1. to evaluate the longevity of the effect of GonaCon in feral cattle up to four years post-vaccination; and 2. to assess if a second booster dose of GonaCon, administered at either two or four years post-vaccination, extends the contraceptive effect in this species. Vaccination with GonaCon, administered as a primer and booster dose, was effective in causing significant infertility in free-living cattle for at least three years post-vaccination, with the percentage of pregnant animals in the vaccinated group decreasing from 76% at vaccination to 35%, 19% and 7% in years 2, 3 and 4 post-vaccination, compared with 67% at vaccination to 50%, 57% and 14% respectively in the control group. A second booster dose of GonaCon administered either 2 or 4 years after vaccination rendered 100% of the Treated cattle infertile for at least another year. These results suggested that vaccination with GonaCon can reduce feral cattle population growth and that a second booster dose can extend the longevity of the contraceptive effect.
Collapse
Affiliation(s)
- Rebecca Pinkham
- National Wildlife Management Centre, Animal and Plant Health Agency, York, United Kingdom
- * E-mail:
| | - Ka-Kei Koon
- Agriculture, Fisheries and Conservation Department, Animal Management (Operation) Division, Hong Kong SAR, China
| | - Jason To
- Agriculture, Fisheries and Conservation Department, Animal Management (Operation) Division, Hong Kong SAR, China
| | - Jason Chan
- Agriculture, Fisheries and Conservation Department, Animal Management (Operation) Division, Hong Kong SAR, China
| | - Flavie Vial
- National Wildlife Management Centre, Animal and Plant Health Agency, York, United Kingdom
| | - Matt Gomm
- National Wildlife Management Centre, Animal and Plant Health Agency, York, United Kingdom
| | - Douglas C. Eckery
- USDA APHIS, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Giovanna Massei
- National Wildlife Management Centre, Animal and Plant Health Agency, York, United Kingdom
| |
Collapse
|
3
|
Li R, Chen S, Li C, Xiao H, Costa V, Bhuiyan MSA, Baig M, Beja-Pereira A. Whole-Genome Analysis Deciphers Population Structure and Genetic Introgression Among Bovine Species. Front Genet 2022; 13:847492. [PMID: 35711941 PMCID: PMC9197319 DOI: 10.3389/fgene.2022.847492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
It is known that throughout history and presently, taurine (Bos taurus) and indicine/zebu (Bos indicus) cattle were crossed with other bovine species (e.g., gayal, gaur, banteng, yak, wisent, and bison). Information on the role of interspecific hybridization to facilitate faster adaptation of the newly arrived domestic species to new environments is poorly known. Herein, we collected 266 samples of bovine species of the taurine, zebu, yak, and gaur from West Europe, Southwest China, Indian subcontinent, and Southeast Asia to conduct the principal component analysis (PCA), admixture, gene flow, and selection signature analyses by using SNPs distributed across the bovine autosomes. The results showed that the genetic relationships between the zebu, yak, and gaur mirrored their geographical origins. Three ancestral components of the European taurine, East Asian taurine, and Indian zebu were found in domestic cattle, and the bidirectional genetic introgression between the Diqing cattle and Zhongdian yak was also detected. Simultaneously, the introgressed genes from the Zhongdian yak to the Diqing cattle were mainly enriched with immune-related pathways, and the ENPEP, FLT1, and PIK3CA genes related to the adaptation of high-altitude hypoxia were detected. Additionally, we found the genetic components of the Zhongdian yak had introgressed into Tibetan cattle. The 30 selected genes were detected in Tibetan cattle, which were significantly enriched in the chemokine signaling pathway. Interestingly, some genes (CDC42, SLC39A2, and EPAS1) associated with hypoxia response were discovered, in which CDC42 and SLC39A2 played important roles in angiogenesis and erythropoiesis, and heart function, respectively. This result showed that genetic introgression was one of the important ways for the environmental adaptation of domestic cattle.
Collapse
Affiliation(s)
- Rong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, China.,College of Life Science, Yunnan Normal University, Kunming, China
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Vânia Costa
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Vairão, Portugal
| | | | - Mumtaz Baig
- Department of Zoology, Government Vidarbha Institute of Science and Humanities, Amravati, India
| | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Vairão, Portugal.,Ambiente e Ordenamento do Território (DGAOT), Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), University of Porto, Vairão, Portugal
| |
Collapse
|
4
|
Hu L, Yu J, Huang R, Yang P, Zhang Z, Chai Y, Shi Q, Chen F, Liu X, Li Z, Ru B, Wang E, Lei C, Peng W, Huang Y. Copy number variation of the CCDC39 gene is associated with growth traits in Chinese cattle. Vet Med Sci 2022; 8:917-924. [PMID: 35233959 PMCID: PMC8959325 DOI: 10.1002/vms3.712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Copy number variation (CNV) has become an essential part of genetic structural variation. Coiled‐coil domain containing 39 (CCDC39) is a gene that related to the growth and development of organs and tissues. It is identified that it has a CNV region by animal genome resequencing. Objective In this study, we detected the phenotypic traits and different distributions of CCDC39 gene copy numbers in five Chinese cattle breeds (Qinchuan (QC) cattle, Yunling (YL) cattle, Xianan (XN) cattle, Pinan (PN) cattle and Jiaxian (JX) cattle). Methods Five hundred and six cattle were randomly selected for CNV distribution detection. Blood samples were taken and genomic DNA was extracted. Different tissues were obtained from adult (n = 3) XN cattle, including heart, liver, kidney, skeletal muscle and lung. The genome qPCR experiment was performed with SYBR Green in triplicate. CDNA qPCR was used to detect the expression level of CCDC39 in different tissues and varieties. Using SPSS v20.0 software, the relationship between CCDC39 CNV and the growth traits of PN, XN, QC, NY and YL cattle breeds was analyzed by one‐way analysis of variance (ANOVA). Results The results showed that the expression of CCDC39 in lung was higher than that in other tissues. The expression in liver and kidney was similar, but the expression in heart and muscle was less. It can be seen that the duplication type of QC cattle CCDC39 CNV is higher than the deletion or normal in the height at hip cross. The normal type of PN cattle in body length and hip width was better than duplication and deletion (p < 0.05). In XN cattle, the deletion type of CNV had superior growth characteristics in heart girth and cannon bone circumference compared with the duplication type and the normal type (p < 0.05). Conclusion The study revealed a significant association between CNV of CCDC39 gene and growth traits in different Chinese cattle breeds.
Collapse
Affiliation(s)
- Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, People's Republic of China
| | - Junjian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Qinghai, People's Republic of China
| | - Rong Huang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, People's Republic of China
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Qinghai, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Yanan Chai
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Fuying Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Chuzhao Lei
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, People's Republic of China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Qinghai, People's Republic of China
| |
Collapse
|
5
|
Deleterious protein-coding variants in diverse cattle breeds of the world. Genet Sel Evol 2021; 53:80. [PMID: 34654372 PMCID: PMC8518297 DOI: 10.1186/s12711-021-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The domestication of wild animals has resulted in a reduction in effective population sizes, which can affect the deleterious mutation load of domesticated breeds. In addition, artificial selection contributes to the accumulation of deleterious mutations because of an increased rate of inbreeding among domesticated animals. Since founder population sizes and artificial selection differ between cattle breeds, their deleterious mutation load can vary. We investigated this question by using whole-genome data from 432 animals belonging to 54 worldwide cattle breeds. Our analysis revealed a negative correlation between genomic heterozygosity and nonsynonymous-to-silent diversity ratio, which suggests a higher proportion of single nucleotide variants (SNVs) affecting proteins in low-diversity breeds. Our results also showed that low-diversity breeds had a larger number of high-frequency (derived allele frequency (DAF) > 0.51) deleterious SNVs than high-diversity breeds. An opposite trend was observed for the low-frequency (DAF ≤ 0.51) deleterious SNVs. Overall, the number of high-frequency deleterious SNVs was larger in the genomes of taurine cattle breeds than of indicine breeds, whereas the number of low-frequency deleterious SNVs was larger in the genomes of indicine cattle than in those of taurine cattle. Furthermore, we observed significant variation in the counts of deleterious SNVs within taurine breeds. The variations in deleterious mutation load between taurine and indicine breeds could be attributed to the population sizes of the wild progenitors before domestication, whereas the variations observed within taurine breeds could be due to differences in inbreeding level, strength of artificial selection, and/or founding population size. Our findings imply that the incidence of genetic diseases can vary between cattle breeds.
Collapse
|