1
|
Robinson AE, Novick I, Herrmann J, DeFelice L, Engel A, Famin D, Fetherston C, Frintu B, Meyersiek J, Mishi M, Nguyễn TGH, Buston PM, Sherratt TN, Mullen SP. Is temporal synchrony necessary for effective Batesian mimicry? Proc Biol Sci 2025; 292:20241737. [PMID: 39837508 PMCID: PMC11750401 DOI: 10.1098/rspb.2024.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Batesian mimicry occurs when palatable mimics gain protection from predators by evolving a phenotypic resemblance to an aposematic model species. While common in nature, the mechanisms maintaining mimicry are not fully understood. Patterns of temporal synchrony (i.e. temporal co-occurrence) and model first occurrence have been observed in several mimicry systems, but the hypothesis that predator foraging decisions can drive the evolution of prey phenology has not been experimentally tested. Here, using phenotypically accurate butterfly replicas, we measured predation rates on the chemically defended model species Battus philenor and its imperfect Batesian mimic Limenitis arthemis astyanax under four different phenological conditions to understand the importance of temporal synchrony and model first occurrence in mimicry complexes. We predicted that protection for mimics increases when predators learn to avoid the models' aposematic signal right before encountering the mimic, and that learned avoidance breaks down over time in the model's absence. Surprisingly, we found that asynchronous model first occurrence, even on short time scales, did not provide increased protection for mimics. Mimics were only protected under conditions of temporal synchrony, suggesting that predators rely on current information, not previously learned information, when making foraging decisions.
Collapse
Affiliation(s)
| | - Isabel Novick
- Department of Biology, Boston University, Boston, MA02215, USA
| | | | - Lily DeFelice
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Aidan Engel
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Dina Famin
- Department of Biology, Boston University, Boston, MA02215, USA
| | | | - Bianca Frintu
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Julia Meyersiek
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Musfika Mishi
- Department of Biology, Boston University, Boston, MA02215, USA
| | | | - Peter M. Buston
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Thomas N. Sherratt
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| | - Sean P. Mullen
- Department of Biology, Boston University, Boston, MA02215, USA
| |
Collapse
|
2
|
Gawel L, Powell EC, Brock M, Taylor LA. Conspicuous stripes on prey capture attention and reduce attacks by foraging jumping spiders. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230907. [PMID: 38026030 PMCID: PMC10663800 DOI: 10.1098/rsos.230907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Many animals avoid predation using aposematic displays that pair toxic/dangerous defences with conspicuous achromatic warning patterns, such as high-contrast stripes. To understand how these prey defences work, we need to understand the decision-making of visual predators. Here we gave two species of jumping spiders (Phidippus regius and Habronattus trimaculatus) choice tests using live termites that had their back patterns manipulated using paper capes (solid white, solid black, striped). For P. regius, black and striped termites were quicker to capture attention. Yet despite this increased attention, striped termites were attacked at lower rates than either white or black. This suggests that the termite's contrast with the background elicits attention, but the internal striped body patterning reduces attacks. Results from tests with H. trimaculatus were qualitatively similar but did not meet the threshold for statistical significance. Additional exploratory analyses suggest that attention to and aversion to stripes is at least partially innate and provide further insight into how decision-making played out during trials. Because of their rich diversity (over 6500 species) that includes variation in natural history, toxin susceptibility and degree of colour vision, jumping spiders are well suited to test broad generalizations about how and why aposematic displays work.
Collapse
Affiliation(s)
- Lauren Gawel
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Erin C. Powell
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
- Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th St, Gainesville, FL 32608, USA
| | - Michelle Brock
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Guo Y, Wang B, Gao H, He C, Hua R, Gao L, Du Y, Xu J. Insight into the Role of Psychological Factors in Oral Mucosa Diseases. Int J Mol Sci 2022; 23:ijms23094760. [PMID: 35563151 PMCID: PMC9099906 DOI: 10.3390/ijms23094760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
With the development of psychology and medicine, more and more diseases have found their psychological origins and associations, especially ulceration and other mucosal injuries, within the digestive system. However, the association of psychological factors with lesions of the oral mucosa, including oral squamous cell carcinoma (OSCC), burning mouth syndrome (BMS), and recurrent aphthous stomatitis (RAS), have not been fully characterized. In this review, after introducing the association between psychological and nervous factors and diseases, we provide detailed descriptions of the psychology and nerve fibers involved in the pathology of OSCC, BMS, and RAS, pointing out the underlying mechanisms and suggesting the clinical indications.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China; (Y.G.); (Y.D.)
| | - Boya Wang
- Department of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China;
| | - Han Gao
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China; (H.G.); (C.H.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China; (H.G.); (C.H.)
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China;
| | - Lei Gao
- Department of Bioinformatics, College of Bioengineering, Capital Medical University, Beijing 100069, China;
| | - Yixuan Du
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China; (Y.G.); (Y.D.)
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China; (H.G.); (C.H.)
- Correspondence: ; Tel./Fax: +86-10-8391-1469
| |
Collapse
|
4
|
Vickers ME, Heisey ML, Taylor LA. Lack of neophobic responses to color in a jumping spider that uses color cues when foraging (Habronattus pyrrithrix). PLoS One 2021; 16:e0254865. [PMID: 34324526 PMCID: PMC8321159 DOI: 10.1371/journal.pone.0254865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
Chemically defended prey often advertise their toxins with bright and conspicuous colors. To understand why such colors are effective at reducing predation, we need to understand the psychology of key predators. In bird predators, there is evidence that individuals avoid novelty-including prey of novel colors (with which they have had no prior experience). Moreover, the effect of novelty is sometimes strongest for colors that are typically associated with aposematic prey (e.g., red, orange, yellow). Given these findings in the bird literature, color neophobia has been argued to be a driving force in the evolution of aposematism. However, no studies have yet asked whether invertebrate predators respond similarly to novel colors. Here, we tested whether naive lab-raised jumping spiders (Habronattus pyrrithrix) exhibit similar patterns of color neophobia to birds. Using color-manipulated living prey, we first color-exposed spiders to prey of two out of three colors (blue, green, or red), with the third color remaining novel. After this color exposure phase, we gave the spiders tests where they could choose between all three colors (two familiar, one novel). We found that H. pyrrithrix attacked novel and familiar-colored prey at equal rates with no evidence that the degree of neophobia varied by color. Moreover, we found no evidence that either prey novelty nor color (nor their interaction) had an effect on how quickly prey was attacked. We discuss these findings in the context of what is known about color neophobia in other animals and how this contributes to our understanding of aposematic signals.
Collapse
Affiliation(s)
- Michael E. Vickers
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Republic of South Africa
| | - Madison L. Heisey
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|