1
|
Marzetti E, Di Lorenzo R, Calvani R, Pesce V, Landi F, Coelho-Júnior HJ, Picca A. From Cell Architecture to Mitochondrial Signaling: Role of Intermediate Filaments in Health, Aging, and Disease. Int J Mol Sci 2025; 26:1100. [PMID: 39940869 PMCID: PMC11817570 DOI: 10.3390/ijms26031100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The coordination of cytoskeletal proteins shapes cell architectures and functions. Age-related changes in cellular mechanical properties have been linked to decreased cellular and tissue dysfunction. Studies have also found a relationship between mitochondrial function and the cytoskeleton. Cytoskeleton inhibitors impact mitochondrial quality and function, including motility and morphology, membrane potential, and respiration. The regulatory properties of the cytoskeleton on mitochondrial functions are involved in the pathogenesis of several diseases. Disassembly of the axon's cytoskeleton and the release of neurofilament fragments have been documented during neurodegeneration. However, these changes can also be related to mitochondrial impairments, spanning from reduced mitochondrial quality to altered bioenergetics. Herein, we discuss recent research highlighting some of the pathophysiological roles of cytoskeleton disassembly in aging, neurodegeneration, and neuromuscular diseases, with a focus on studies that explored the relationship between intermediate filaments and mitochondrial signaling as relevant contributors to cellular health and disease.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
2
|
Duan M, Liu Y, Pi C, Zhao Y, Tian Y, Xie J. TGF-β2 enhances nanoscale cortex stiffness via condensation of cytoskeleton-focal adhesion plaque. Biophys J 2025; 124:336-350. [PMID: 39645584 PMCID: PMC11788479 DOI: 10.1016/j.bpj.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
Physical spatiotemporal characteristics of cellular cortex dominate cell functions and even determine cell fate. The cellular cortex is able to reorganize to a dynamic steady status with changed stiffnesses once stimulated, and thus alter the physiological and pathological activities of almost all types of cells. TGF-β2, a potent pleiotropic growth factor, plays important roles in cartilage development, endochondral ossification, and cartilage diseases. However, it is not yet known whether TGF-β2 would alter the physical spatiotemporal characteristics of the cell cortex such as cortex stiffness, thereby affecting the function of chondrocytes. In this study, we investigated the influence of TGF-β2 on cellular cortex stiffness of chondrocytes and the underlying mechanism. We firstly detected TGF-β2-induced changes in cytoskeleton and focal adhesion plaque, which were closely related to cellular cortex stiffness. We then characterized the landscape of nanoscale cortex stiffness in individual chondrocytes induced by TGF-β2 via atomic force microscopy. By using inhibitors, latrunculin A and blebbistatin, we verified the importance of cytoskeleton-focal adhesion plaque axis on cellular cortex stiffness of chondrocytes induced by TGF-β2. We finally elucidated that TGF-β2 enhanced the phosphorylation of Smad3 and facilitated the nuclear accumulation of p-Smad3. The p-Smad3 aggregated in the nuclei enhanced the cytoskeleton and focal adhesion plaque at transcriptional level, thereby mediating changes in cell cortex stiffness. Taken together, these results provide an understanding about the role of TGF-β2 on physical spatiotemporal properties of cell cortex in chondrocytes, and might provide cues for interpretation of cartilage development and interventions to cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanfang Zhao
- Department of Prosthodontics, Indiana University, Bloomington, Indiana
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Pérez-Sala D, Quinlan RA. The redox-responsive roles of intermediate filaments in cellular stress detection, integration and mitigation. Curr Opin Cell Biol 2024; 86:102283. [PMID: 37989035 DOI: 10.1016/j.ceb.2023.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
Intermediate filaments are critical for cell and tissue homeostasis and for stress responses. Cytoplasmic intermediate filaments form versatile and dynamic assemblies that interconnect cellular organelles, participate in signaling and protect cells and tissues against stress. Here we have focused on their involvement in redox signaling and oxidative stress, which arises in numerous pathophysiological situations. We pay special attention to type III intermediate filaments, mainly vimentin, because it provides a physical interface for redox signaling, stress responses and mechanosensing. Vimentin possesses a single cysteine residue that is a target for multiple oxidants and electrophiles. This conserved residue fine tunes vimentin assembly, response to oxidative stress and crosstalk with other cellular structures. Here we integrate evidence from the intermediate filament and redox biology fields to propose intermediate filaments as redox sentinel networks of the cell. To support this, we appraise how vimentin detects and orchestrates cellular responses to oxidative and electrophilic stress.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040 Madrid, Spain.
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, United Kingdom; Biophysical Sciences Institute, University of Durham, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, WA, United States.
| |
Collapse
|
4
|
Kitagawa N. Antimicrobial peptide nisin induces spherical distribution of macropinocytosis-like cytokeratin 5 and cytokeratin 17 following immediate derangement of the cell membrane. Anat Cell Biol 2022; 55:190-204. [PMID: 34903675 PMCID: PMC9256486 DOI: 10.5115/acb.21.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
The anti-aging effects of Lactococcus lactis are extensively investigated. Nisin is an antimicrobial peptide produced by L. lactis subsp. lactis. We previously reported that 24-hour nisin treatment disturbs the intermediate filament distribution in human keratinocytes. Additionally, we showed that the ring-like distribution of the intermediate filament proteins, cytokeratin (CK) 5 and CK17 is a marker of nisin action. However, two questions remained unanswered: 1) What do the CK5 and CK17 ring-like distributions indicate? 2) Is nisin ineffective under the experimental conditions wherein CK5 and CK17 do not exhibit a ring-like distribution? Super resolution microscopy revealed that nisin treatment altered CK5 and CK17 distribution, making them spherical rather than ring-like, along with actin incorporation. This spherical distribution was not induced by the suppression of endocytosis. The possibility of a macropinocytosis-like phenomenon was indicated, because the spherical distribution was >1 µm in diameter and the spherical distribution was suppressed by macropinocytosis inhibiting conditions, such as the inclusion of an actin polymerization inhibitor and cell migration. Even when the spherical distribution of CK5 and CK17 was not induced, nisin induced derangement of the cell membrane. Nisin treatment for 30 minutes deranged the regular arrangement of the lipid layer (flip-flop); the transmembrane structure of the CK5-desmosome or CK17-desmosome protein complex was disturbed. To the best of our knowledge, this is the first study to report that CK5 and CK17 in a spherical distribution could be involved in a macropinosome-like structure, under certain conditions of nisin action in keratinocytes.
Collapse
Affiliation(s)
- Norio Kitagawa
- Oral Medicine Research Center, Fukuoka Gakuen, Fukuoka, Japan
- Department of Dental Hygienist, Fukuoka College of Health Sciences, Fukuoka, Japan
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
- Wellbeing Laboratory, Fukuoka, Japan
| |
Collapse
|
5
|
Gouveia M, Sorčan T, Zemljič-Jokhadar Š, Travasso RDM, Liović M. A mathematical model for the dependence of keratin aggregate formation on the quantity of mutant keratin expressed in EGFP-K14 R125P keratinocytes. PLoS One 2021; 16:e0261227. [PMID: 34962936 PMCID: PMC8714116 DOI: 10.1371/journal.pone.0261227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
We examined keratin aggregate formation and the possible mechanisms involved. With this aim, we observed the effect that different ratios between mutant and wild-type keratins expressed in cultured keratinocytes may have on aggregate formation in vitro, as well as how keratin aggregate formation affects the mechanical properties of cells at the cell cortex. To this end we prepared clones with expression rates as close as possible to 25%, 50% and 100% of the EGFP-K14 proteins (either WT or R125P and V270M mutants). Our results showed that only in the case of the 25% EGFP-K14 R125P mutant significant differences could be seen. Namely, we observed in this case the largest accumulation of keratin aggregates and a significant reduction in cell stiffness. To gain insight into the possible mechanisms behind this observation, we extended our previous mathematical model of keratin dynamics by implementing a more complex reaction network that considers the coexistence of wild-type and mutant keratins in the cell. The new model, consisting of a set of coupled, non-linear, ordinary differential equations, allowed us to draw conclusions regarding the relative amounts of intermediate filaments and aggregates in cells, and suggested that aggregate formation by asymmetric binding between wild-type and mutant keratins could explain the data obtained on cells grown in culture.
Collapse
Affiliation(s)
- Marcos Gouveia
- Department of Physics, CFisUC, Center of Physics of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- * E-mail: (MG); (RDMT); (ML)
| | | | - Špela Zemljič-Jokhadar
- Faculty of Medicine, Institute for Biophysics, University of Ljubljana, Ljubljana, Slovenia
| | - Rui D. M. Travasso
- Department of Physics, CFisUC, Center of Physics of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- * E-mail: (MG); (RDMT); (ML)
| | - Mirjana Liović
- Faculty of Medicine, Medical Center for Molecular Biology, Institute for Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (MG); (RDMT); (ML)
| |
Collapse
|