1
|
Liu L, Zhao Y, Zeng M, Xu X. Research progress of fishy odor in aquatic products: From substance identification, formation mechanism, to elimination pathway. Food Res Int 2024; 178:113914. [PMID: 38309863 DOI: 10.1016/j.foodres.2023.113914] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Fishy odor in aquatic products has a significant impact on the purchasing decisions of consumers. The production of aquatic products is a complex process involving culture, processing, transportation, and storage, which contribute to decreases in flavor and quality. This review systematically summarizes the fishy odor composition, identification methods, generation mechanism, and elimination methods of fishy odor compounds from their origin and formation to their elimination. Fishy odor compounds include aldehydes (hexanal, heptanal, and nonanal), alcohols (1-octen-3-ol), sulfur-containing compounds (dimethyl sulfide), and amines (trimethylamine). The mechanism of action of various factors affecting fishy odor is revealed, including environmental factors, enzymatic reactions, lipid oxidation, protein degradation, and microbial metabolism. Furthermore, the control and removal of fishy odor are briefly summarized and discussed, including masking, elimination, and conversion. This study provides a theoretical basis from source to elimination for achieving targeted regulation of the flavor of aquatic products, promoting industrial innovation and upgrading.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
3
|
Oliveira-Alves SC, Andrade F, Prazeres I, Silva AB, Capelo J, Duarte B, Caçador I, Coelho J, Serra AT, Bronze MR. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants (Basel) 2021; 10:1312. [PMID: 34439560 PMCID: PMC8389250 DOI: 10.3390/antiox10081312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Salicornia ramosissima J. Woods is a halophyte plant recognized as a promising natural ingredient and will eventually be recognized a salt substitute (NaCl). However, its shelf-life and applicability in several food matrices requires the use of drying processes, which may have an impact on its nutritional and functional value. The objective of this study was to evaluate the effect of oven and freeze-drying processes on the nutritional composition, volatile profile, phytochemical content, and bioactivity of S. ramosissima using several analytical tools (LC-DAD-ESI-MS/MS and SPME-GC-MS) and bioactivity assays (ORAC, HOSC, and ACE inhibition and antiproliferative effect on HT29 cells). Overall, results show that the drying process changes the chemical composition of the plant. When compared to freeze-drying, the oven-drying process had a lower impact on the nutritional composition but the phytochemical content and antioxidant capacity were significantly reduced. Despite this, oven-dried and freeze-dried samples demonstrated similar antiproliferative (17.56 mg/mL and 17.24 mg/mL, respectively) and antihypertensive (24.56 mg/mL and 18.96 mg/mL, respectively) activities. The volatile composition was also affected when comparing fresh and dried plants and between both drying processes: while for the freeze-dried sample, terpenes corresponded to 57% of the total peak area, a decrease to 17% was observed for the oven-dried sample. The oven-dried S. ramosissima was selected to formulate a ketchup and the product formulated with 2.2% (w/w) of the oven-dried plant showed a good consumer acceptance score. These findings support the use of dried S. ramosissima as a promising functional ingredient that can eventually replace the use of salt.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Inês Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Andreia B. Silva
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge Capelo
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, 2780-505 Oeiras, Portugal;
| | - Bernardo Duarte
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Júlio Coelho
- Horta da Ria Lda., Rua de São Rui, 3830-362 Gafanha Nazaré, Portugal;
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria R. Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
4
|
Takagi S, Sato Y, Murata Y, Kokubun A, Touhata K, Ishida N, Agatsuma Y. Quantification of the Flavor and Taste of Gonads from the Sea Urchin Mesocentrotus nudus Using GC-MS and a Taste-Sensing System. SENSORS 2020; 20:s20247008. [PMID: 33302380 PMCID: PMC7762567 DOI: 10.3390/s20247008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Sea urchin gonads are a delicious seafood item of high commercial value. Our past studies have revealed that the gonads of the sea urchin Mesocentrotus nudus fed the basal frond portion of fresh Saccharina kelp (BS) or the sporophylls of fresh Undaria (SU) during May–July are of high-quality. The present study investigated the flavor and taste of BS and SU gonads in comparison with those from non-fed M. nudus (NF) using gas chromatography–mass spectrometry (GC–MS) and gas chromatography (GC)-sniffing techniques, and a taste-sensing system. Data of the estimated intensity of taste (EIT) were compared with assessment of gonads from M. nudus collected from an Eisenia bed (fishing ground) and a barren in July. Gonads from both BS and SU released pleasant green, sour, and fruity aromas characteristic of butyl acetate, which are here recognized essential flavor components of high-quality gonads. The gonads of BS and SU had a strong umami taste compared to those of NF, and the Eisenia bed and the barren. The most marketable M. nudus gonads were assessed to be those with green and fruity aromas from butyl acetate, sweet aroma from benzaldehyde, umami EIT > 13.8, bitterness EIT < 3.1, and without any unpleasant sulfurous odor from sulfur-containing compounds.
Collapse
Affiliation(s)
- Satomi Takagi
- Laboratory of Marine Plant Ecology, Graduate School of Agricultural Science, Tohoku University, Aza-Aoba, Aramaki, Aoba, Sendai, Miyagi 980-0845, Japan;
| | - Yoichi Sato
- Riken Food Co., Ltd., Miyauchi, Tagajyo, Miyagi 985-0844, Japan;
- Nishina Center for Accelerator-Based Science, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuko Murata
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan; (Y.M.); (K.T.); (N.I.)
| | - Atsuko Kokubun
- Food Analysis Laboratory, Quality Assurance Division, RIKEN VITAMIN Co., Ltd., Aoyagi, Soka, Saitama 340-0002, Japan;
| | - Ken Touhata
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan; (Y.M.); (K.T.); (N.I.)
| | - Noriko Ishida
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan; (Y.M.); (K.T.); (N.I.)
| | - Yukio Agatsuma
- Laboratory of Marine Plant Ecology, Graduate School of Agricultural Science, Tohoku University, Aza-Aoba, Aramaki, Aoba, Sendai, Miyagi 980-0845, Japan;
- Correspondence: ; Tel.: +81-22-757-4153
| |
Collapse
|