1
|
Li M, Zou J, Cheng Q, Fu R, Zhang D, Lai Y, Chen Y, Yang C, Hu W, Ding S. Genome-Wide Identification and Expression of the ERF Gene Family in Populus trichocarpa and Their Responses to Nitrogen and Abiotic Stresses. Life (Basel) 2025; 15:550. [PMID: 40283105 PMCID: PMC12029025 DOI: 10.3390/life15040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
The ethylene response factor (ERF) family is a prominent plant-specific transcription factor family, which plays a crucial role in modulating plant growth and stress tolerance. In this study, a total of 210 ERFs were identified in Populus trichocarpa, comprising 29 AP2 (APETALA2) subfamily members, 176 ERF subfamily members, and 5 RAV (related to ABI3/VP1) subfamily members. The duplication events of the PtERF family members exclusively occurred within the subfamilies. A total of 168 duplication pairs were found among 161 PtERF genes, and all of them were fragment duplications. Gene structure analysis revealed that most ERF subfamily members only had one exon without introns, the AP2 subfamily members had six or more introns and exons, and RAV subfamily members lacked introns except for PtERF102. Considerable cis-acting elements associated with plant growth and development, stress response, hormone response, and light response were detected in the promoters of PtERF genes. The expression levels of PtERFs were highest in roots across tissues and in winter among seasons. Furthermore, the nitrate and urea stimulated the expression of PtERF genes. The co-expression network analysis based on PtERFs indicated their potential roles in hormone signaling, acyltransferase activity, and response to chemicals. This study provides novel insights into investigating the role of PtERFs in environmental stress in poplar species.
Collapse
Affiliation(s)
- Mingwan Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| | - Jun Zou
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| | - Qian Cheng
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ran Fu
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| | - Yong Lai
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| | - Yuanyuan Chen
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| | - Chaochen Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Shen Ding
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (M.L.); (J.Z.); (R.F.); (D.Z.); (Y.L.); (Y.C.); (C.Y.)
| |
Collapse
|
2
|
Nguyen-Hoang A, Sandell FL, Himmelbauer H, Dohm JC. Spinach genomes reveal migration history and candidate genes for important crop traits. NAR Genom Bioinform 2024; 6:lqae034. [PMID: 38633427 PMCID: PMC11023180 DOI: 10.1093/nargab/lqae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Spinach (Spinacia oleracea) is an important leafy crop possessing notable economic value and health benefits. Current genomic resources include reference genomes and genome-wide association studies. However, the worldwide genetic relationships and the migration history of the crop remained uncertain, and genome-wide association studies have produced extensive gene lists related to agronomic traits. Here, we re-analysed the sequenced genomes of 305 cultivated and wild spinach accessions to unveil the phylogeny and history of cultivated spinach and to explore genetic variation in relation to phenotypes. In contrast to previous studies, we employed machine learning methods (based on Extreme Gradient Boosting, XGBoost) to detect variants that are collectively associated with agronomic traits. Variant-based cluster analyses revealed three primary spinach groups in the Middle East, Asia and Europe/US. Combining admixture analysis and allele-sharing statistics, migration routes of spinach from the Middle East to Europe and Asia are presented. Using XGBoost machine learning models we predict genomic variants influencing bolting time, flowering time, petiole color, and leaf surface texture and propose candidate genes for each trait. This study enhances our understanding of the history and phylogeny of domesticated spinach and provides valuable information on candidate genes for future genetic improvement of the crop.
Collapse
Affiliation(s)
- An Nguyen-Hoang
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Felix L Sandell
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Juliane C Dohm
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
3
|
Correction: Comparative analysis of tissue-specific transcriptomic responses to nitrogen stress in spinach (Spinacia oleracea). PLoS One 2024; 19:e0303546. [PMID: 38713658 DOI: 10.1371/journal.pone.0303546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0232011.].
Collapse
|
4
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
5
|
Ma Z, Hu L, Jiang W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int J Mol Sci 2024; 25:893. [PMID: 38255967 PMCID: PMC10815832 DOI: 10.3390/ijms25020893] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| |
Collapse
|
6
|
Ramezani M, Thompson D, Moreno M, Joshi V. Biochemical repercussions of light spectra on nitrogen metabolism in spinach ( Spinacia oleracea) under a controlled environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1283730. [PMID: 38179482 PMCID: PMC10765523 DOI: 10.3389/fpls.2023.1283730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Introduction Selecting appropriate light spectra of light-emitting diodes (LEDs) and optimal nutrient composition fertilizers has become integral to commercial controlled environment agriculture (CEA) platforms. Methods This study explored the impact of three LED light regimes (BR: Blue17%, Green 4%, Red 63%, Far-Red 13% and infrared 3%, BGR; Blue 20%, Green 23%, Red 47%, Far-Red 8% and infrared 2%; and GR; Blue 25%, Green 41%, Red 32%, and Far-Red 2%) and nitrogen levels (3.6 and 14.3 mM N) on spinach (Spinacea oleracea). Results Under limited nitrogen (3.6 mM), BGR light increased the fresh shoot (32%) and root (39%) biomass than BR, suggesting additional green light's impact on assimilating photosynthates under suboptimal nitrogen availability. Reduced chlorophyll (a and b) and carotenoid accumulation, electron transport rate (ETR), and higher oxalates under limited nitrogen availability highlighted the adverse effects of red light (BR) on spinach productivity. Increased activities of nitrogen-associated enzymes (GOGAT; Glutamate synthase, GDH; NADH-Glutamate dehydrogenase, NR; Nitrate reductase, and GS; Glutamine synthetase) in spinach plants under BGR light further validated the significance of green light in nitrogen assimilation. Amino acid distributions remained unchanged across the light spectra, although limited nitrogen availability significantly decreased the percent distribution of glutamine and aspartic acid. Conclusion Overall, this study demonstrated the favorable impacts of additional green light on spinach productivity, as demonstrated under BGR, than GR alone in response to nitrogen perturbation. However, the exact mechanisms underlying these impacts still need to be unveiled. Nevertheless, these outcomes provided new insights into our understanding of light spectra on spinach nitrogen metabolism.
Collapse
Affiliation(s)
- Moazzameh Ramezani
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, United States
| | - Dalton Thompson
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, United States
| | - Matte Moreno
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, United States
| | - Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Li H, Wang Q, Huang T, Liu J, Zhang P, Li L, Xie H, Wang H, Liu C, Qin P. Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers. Int J Mol Sci 2023; 24:11580. [PMID: 37511340 PMCID: PMC10380953 DOI: 10.3390/ijms241411580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual amaranth herb that belongs to the family Chenopodiaceae. Quinoa can be cultivated across a wide range of climatic conditions. With regard to its cultivation, nitrogen-based fertilizers have a demonstrable effect on the growth and development of quinoa. How crops respond to the application of nitrogen affects grain quality and yield. Therefore, to explore the regulatory mechanisms that underlie the responses of quinoa seedlings to the application of nitrogen, we selected two varieties (i.e., Dianli-1299 and Dianli-71) of quinoa seedlings and analyzed them using metabolomic and transcriptomic techniques. Specifically, we studied the mechanisms underlying the responses of quinoa seedlings to varying concentrations of nitrogen by analyzing the dynamics of metabolites and genes involved in arginine biosynthesis; carbon fixation; and alanine, aspartate, and glutamate biosynthetic pathways. Overall, we found that differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of quinoa are affected by the concentration of nitrogen. We detected 1057 metabolites, and 29,012 genes were annotated for the KEGG. We also found that 15 DEMs and 8 DEGs were key determinants of the differences observed in quinoa seedlings under different nitrogen concentrations. These contribute toward a deeper understanding of the metabolic processes of plants under different nitrogen treatments and provide a theoretical basis for improving the nitrogen use efficiency (NUE) of quinoa.
Collapse
Affiliation(s)
- Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingzhi Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Sunseri F, Aci MM, Mauceri A, Caldiero C, Puccio G, Mercati F, Abenavoli MR. Short-term transcriptomic analysis at organ scale reveals candidate genes involved in low N responses in NUE-contrasting tomato genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1125378. [PMID: 36938018 PMCID: PMC10020590 DOI: 10.3389/fpls.2023.1125378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Understanding the complex regulatory network underlying plant nitrogen (N) responses associated with high Nitrogen Use Efficiency (NUE) is one of the main challenges for sustainable cropping systems. Nitrate (NO3 -), acting as both an N source and a signal molecule, provokes very fast transcriptome reprogramming, allowing plants to adapt to its availability. These changes are genotype- and tissue-specific; thus, the comparison between contrasting genotypes is crucial to uncovering high NUE mechanisms. METHODS Here, we compared, for the first time, the spatio-temporal transcriptome changes in both root and shoot of two NUE contrasting tomato genotypes, Regina Ostuni (high-NUE) and UC82 (low-NUE), in response to short-term (within 24 h) low (LN) and high (HN) NO3 - resupply. RESULTS Using time-series transcriptome data (0, 8, and 24 h), we identified 395 and 482 N-responsive genes differentially expressed (DEGs) between RO and UC82 in shoot and root, respectively. Protein kinase signaling plant hormone signal transduction, and phenylpropanoid biosynthesis were the main enriched metabolic pathways in shoot and root, respectively, and were upregulated in RO compared to UC82. Interestingly, several N transporters belonging to NRT and NPF families, such as NRT2.3, NRT2.4, NPF1.2, and NPF8.3, were found differentially expressed between RO and UC82 genotypes, which might explain the contrasting NUE performances. Transcription factors (TFs) belonging to several families, such as ERF, LOB, GLK, NFYB, ARF, Zinc-finger, and MYB, were differentially expressed between genotypes in response to LN. A complementary Weighted Gene Co-expression Network Analysis (WGCNA) allowed the identification of LN-responsive co-expression modules in RO shoot and root. The regulatory network analysis revealed candidate genes that might have key functions in short-term LN regulation. In particular, an asparagine synthetase (ASNS), a CBL-interacting serine/threonine-protein kinase 1 (CIPK1), a cytokinin riboside 5'-monophosphate phosphoribohydrolase (LOG8), a glycosyltransferase (UGT73C4), and an ERF2 were identified in the shoot, while an LRR receptor-like serine/threonine-protein kinase (FEI1) and two TFs NF-YB5 and LOB37 were identified in the root. DISCUSSION Our results revealed potential candidate genes that independently and/or concurrently may regulate short-term low-N response, suggesting a key role played by cytokinin and ROS balancing in early LN regulation mechanisms adopted by the N-use efficient genotype RO.
Collapse
Affiliation(s)
- Francesco Sunseri
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Palermo, Italy
| | - Meriem Miyassa Aci
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Antonio Mauceri
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Ciro Caldiero
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Palermo, Italy
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
| | - Francesco Mercati
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Palermo, Italy
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
9
|
Ruggiero A, Punzo P, Van Oosten MJ, Cirillo V, Esposito S, Costa A, Maggio A, Grillo S, Batelli G. Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress. FRONTIERS IN PLANT SCIENCE 2022; 13:974048. [PMID: 36507383 PMCID: PMC9732681 DOI: 10.3389/fpls.2022.974048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Paola Punzo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | | | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Salvatore Esposito
- CREA-CI, Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Antonello Costa
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Stefania Grillo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Giorgia Batelli
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| |
Collapse
|
10
|
Transcriptome analysis of mulberry (Morus alba L.) leaves to identify differentially expressed genes associated with post-harvest shelf-life elongation. Sci Rep 2022; 12:18195. [PMID: 36307466 PMCID: PMC9616847 DOI: 10.1038/s41598-022-21828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022] Open
Abstract
Present study deals with molecular expression patterns responsible for post-harvest shelf-life extension of mulberry leaves. Quantitative profiling showed retention of primary metabolite and accumulation of stress markers in NS7 and CO7 respectively. The leaf mRNA profiles was sequenced using the Illumina platform to identify DEGs. A total of 3413 DEGs were identified between the treatments. Annotation with Arabidopsis database has identified 1022 DEGs unigenes. STRING generated protein-protein interaction, identified 1013 DEGs nodes with p < 1.0e-16. KEGG classifier has identified genes and their participating biological processes. MCODE and BiNGO detected sub-networking and ontological enrichment, respectively at p ≤ 0.05. Genes associated with chloroplast architecture, photosynthesis, detoxifying ROS and RCS, and innate-immune response were significantly up-regulated, responsible for extending shelf-life in NS7. Loss of storage sucrose, enhanced activity of senescence-related hormones, accumulation of xenobiotics, and development of osmotic stress inside tissue system was the probable reason for tissue deterioration in CO7. qPCR validation of DEGs was in good agreement with RNA sequencing results, indicating the reliability of the sequencing platform. Present outcome provides a molecular insight regarding involvement of genes in self-life extension, which might help the sericulture industry to overcome their pre-existing problems related to landless farmers and larval feeding during monsoon.
Collapse
|
11
|
Kumar P, Eriksen RL, Simko I, Shi A, Mou B. Insights into nitrogen metabolism in the wild and cultivated lettuce as revealed by transcriptome and weighted gene co-expression network analysis. Sci Rep 2022; 12:9852. [PMID: 35701518 PMCID: PMC9197935 DOI: 10.1038/s41598-022-13954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Large amounts of nitrogen fertilizers applied during lettuce (Lactuca sativa L.) production are lost due to leaching or volatilization, causing severe environmental pollution and increased costs of production. Developing lettuce varieties with high nitrogen use efficiency (NUE) is the eco-friendly solution to reduce nitrogen pollution. Hence, in-depth knowledge of nitrogen metabolism and assimilation genes and their regulation is critical for developing high NUE varieties. In this study, we performed comparative transcriptomic analysis of the cultivated lettuce (L. sativa L.) and its wild progenitor (L. serriola) under high and low nitrogen conditions. A total of 2,704 differentially expressed genes were identified. Key enriched biological processes included photosynthesis, oxidation-reduction process, chlorophyll biosynthetic process, and cell redox homeostasis. The transcription factors (TFs) belonging to the ethylene responsive factor family and basic helix-loop-helix family were among the top differentially expressed TFs. Using weighted gene co-expression network analysis we constructed nine co-expression modules. Among these, two modules were further investigated because of their significant association with total nitrogen content and photosynthetic efficiency of photosystem II. Three highly correlated clusters were identified which included hub genes for nitrogen metabolism, secondary metabolites, and carbon assimilation, and were regulated by cluster specific TFs. We found that the expression of nitrogen transportation and assimilation genes varied significantly between the two lettuce species thereby providing the opportunity of introgressing wild alleles into the cultivated germplasm for developing lettuce cultivars with more efficient use of nitrogen.
Collapse
Affiliation(s)
- Pawan Kumar
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA.
| | - Renee L Eriksen
- Forage Seed and Cereal Research Unit, USDA-ARS, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Ivan Simko
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA
| |
Collapse
|
12
|
Joshi V, Penalosa A, Joshi M, Rodriguez S. Regulation of Oxalate Metabolism in Spinach Revealed by RNA-Seq-Based Transcriptomic Analysis. Int J Mol Sci 2021; 22:ijms22105294. [PMID: 34069886 PMCID: PMC8157348 DOI: 10.3390/ijms22105294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/12/2023] Open
Abstract
Although spinach (Spinacia oleracea L.) is considered to be one of the most nutrient-rich leafy vegetables, it is also a potent accumulator of anti-nutritional oxalate. Reducing oxalate content would increase the nutritional value of spinach by enhancing the dietary bioavailability of calcium and other minerals. This study aimed to investigate the proposed hypothesis that a complex network of genes associated with intrinsic metabolic and physiological processes regulates oxalate homeostasis in spinach. Transcriptomic (RNA-Seq) analysis of the leaf and root tissues of two spinach genotypes with contrasting oxalate phenotypes was performed under normal physiological conditions. A total of 2308 leaf- and 1686 root-specific differentially expressed genes (DEGs) were identified in the high-oxalate spinach genotype. Gene Ontology (GO) analysis of DEGs identified molecular functions associated with various enzymatic activities, while KEGG pathway analysis revealed enrichment of the metabolic and secondary metabolite pathways. The expression profiles of genes associated with distinct physiological processes suggested that the glyoxylate cycle, ascorbate degradation, and photorespiratory pathway may collectively regulate oxalate in spinach. The data support the idea that isocitrate lyase (ICL), ascorbate catabolism-related genes, and acyl-activating enzyme 3 (AAE3) all play roles in oxalate homeostasis in spinach. The findings from this study provide the foundation for novel insights into oxalate metabolism in spinach.
Collapse
Affiliation(s)
- Vijay Joshi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA;
- Correspondence: ; Tel.: +1-830-988-6137
| | - Arianne Penalosa
- College of Science, University of Texas, Arlington, TX 76019, USA; (A.P.); (S.R.)
| | - Madhumita Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA;
| | - Sierra Rodriguez
- College of Science, University of Texas, Arlington, TX 76019, USA; (A.P.); (S.R.)
| |
Collapse
|
13
|
Lu L, Zhang Y, Li L, Yi N, Liu Y, Qaseem MF, Li H, Wu AM. Physiological and Transcriptomic Responses to Nitrogen Deficiency in Neolamarckia cadamba. FRONTIERS IN PLANT SCIENCE 2021; 12:747121. [PMID: 34887886 PMCID: PMC8649893 DOI: 10.3389/fpls.2021.747121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/12/2021] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) is one of the abundant and essential elements for plant growth and development, and N deficiency (ND) affects plants at both physiological and transcriptomic levels. Neolamarckia cadamba is a fast-growing woody plant from the Rubiaceae family. However, the physiological and molecular impacts of ND on this species have not been well investigated. Here, we studied how N. cadamba responds to ND under hydroponic conditions. In a physiological aspect, ND led to a reduction in biomass, chlorophyll content, and photosynthetic capacity. ND also impaired the assimilation of N as the activities of glutamine synthetase (GS) and nitrate reductase (NR) were decreased in the root. Interestingly, the lignin content of stem increased progressively during the ND stress. The main transcription factors, the transcription factors that are important to N regulation has been found to be upregulated, including Nodule inception-like protein 7 (NLP7), TGACG motif-binding factor 1 (TGA1), basic helix-loop-helix protein 45 (BHLH45), NAM, ATAF1,2, CUC2 (NAC) transcription factor 43 (NAC43), and basic leucine zipper pattern 44 (bZIP44). The expression of N transporters, such as nitrate transporter 2.4 (NRT2.4), ammonium transporter 3 (AMT3), and amino acid transporter protein 3 (AAP3), was also upregulated. In addition, phosphorus- and calcium-related genes such as phosphate starvation response 2 (PHR2) and cyclic nucleotide-gated ion channel 15 (CNGC15) were expressed more abundantly in response to ND stress. Our results reveal the physiological and molecular mechanisms by which woody plants respond to ND.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Na Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Yi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- *Correspondence: Huiling Li,
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Ai-Min Wu,
| |
Collapse
|