1
|
Oeum K, Suong M, Uon K, Jobert L, Bellafiore S, Comte A, Thomas E, Kuok F, Moulin L. Comparison of plant microbiota in diseased and healthy rice reveals methylobacteria as health signatures with biocontrol capabilities. FRONTIERS IN PLANT SCIENCE 2024; 15:1468192. [PMID: 39534110 PMCID: PMC11554501 DOI: 10.3389/fpls.2024.1468192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Introduction Rice (Oryza sativa) is a staple food worldwide, but its production is under constant pressure from both abiotic and biotic stresses, resulting in high use of agrochemicals. The plant microbiome harbours microorganisms that can benefit plant health and provide alternatives to the use of agrochemicals. The composition of plant microbiomes depends on many factors (soil composition, age, and health) and is considered a primary driver of future plant health. To identify plant microbiomes that protect against disease, we hypothesised that asymptomatic rice plants in fields under high pathogen pressure (i.e., healthy islands of plants among predominantly diseased plants) might harbour a microbiota that protects them from disease. Material and Methods We sampled healthy and leaf-diseased plants in rice fields with high disease incidence in Cambodia and profiled their microbiota at leaf, root, and rhizosphere levels using 16S V3V4 and 18S V4 amplicon barcoding sequencing. Results Comparison of amplicon sequence variants (ASV) of the microbiota of healthy and diseased samples revealed both disease and healthy signatures (significant enrichment or depletion at ASV/species/genus level) in both fields. The genera Methylobacterium and Methylorubrum were identified health taxa signatures with several species significantly enriched in healthy leaf samples (Methylobacterium indicum, Methylobacterium komagatae, Methylobacterium aerolatum, and Methylorubrum rhodinum). A cultivation approach on rice samples led to the isolation of bacterial strains of these two genera, which were further tested as bioinoculants on rice leaves under controlled conditions, showing for some of them a significant reduction (up to 77%) in symptoms induced by Xanthomonas oryzae pv. oryzae infection. Discussion We validated the hypothesis that healthy plants in fields under high disease occurrence can host specific microbiota with biocontrol capacities. This strategy could help identify new microbes with biocontrol potential for sustainable rice production.
Collapse
Affiliation(s)
- Kakada Oeum
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Malyna Suong
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Kimsrong Uon
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Léa Jobert
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Stéphane Bellafiore
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Aurore Comte
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Emilie Thomas
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Fidero Kuok
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Lionel Moulin
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
- Plant Health Institute of Montpellier (PHIM), IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
2
|
Valdez-Nuñez RA, Ramos-Luna LC, Meza-Catalán PP, Asencios-Sifuentes NR, Ocaña-Rodriguez AW, Chávez-Galarza JC, Sandoval-Vergara AN, Béna G. Genetic Diversity and Virulence of Phytopathogenic Burkholderia glumae Strains Isolated from Rice Cultivars in Valleys of the High Jungle of Perú. PLANT DISEASE 2024; 108:2376-2388. [PMID: 38386299 DOI: 10.1094/pdis-09-23-1823-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Burkholderia glumae causes bacterial leaf blight in rice, and its global spread has been exacerbated by climate change. To understand the genetic diversity and virulence of B. glumae strains isolated from rice cultivars in Perú, 47 isolates were obtained from infected rice fields, all belonging to B. glumae, and confirmed by recA and toxB sequences. The BOX-PCR typing group has 38 genomic profiles, and these turn into seven variable number tandem repeats (VNTR) haplotypes. There was no correlation between clustering and geographical origin. Nineteen strains were selected for phenotypic characterization and virulence, using both the maceration level of the onion bulb proxy and inoculation of seeds of two rice cultivars. Several strains produced pigments other than toxoflavin, which correlated with onion bulb maceration. In terms of virulence at the seed level, all strains produced inhibition at the root and coleoptile level, but the severity of symptoms varied significantly between strains, revealing significant differences in pathogenicity. There is no correlation between maceration and virulence scores, probably reflecting different virulence mechanisms depending on the host infection stage. This is the first study to evaluate the VNTR diversity and virulence of Peruvian strains of B. glumae in two commercial cultivars.
Collapse
Affiliation(s)
- Renzo A Valdez-Nuñez
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Lucero C Ramos-Luna
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Patricia P Meza-Catalán
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | | | - Angel W Ocaña-Rodriguez
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Julio C Chávez-Galarza
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Ana N Sandoval-Vergara
- Departamento Académico Agrosilvopastoril, Universidad Nacional de San Martín, Tarapoto, Perú
| | - Gilles Béna
- IRD, CIRAD, INRAe, Institut Agro, PHIM (Plant Health Institute of Montpellier), University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, Saidi NB, Yusof MT. A laudable strategy to manage bacterial panicle blight disease of rice using biocontrol agents. J Basic Microbiol 2023; 63:1180-1195. [PMID: 37348082 DOI: 10.1002/jobm.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Bacterial panicle blight (BPB) disease is a dreadful disease in rice-producing countries. Burkholderia glumae, a Gram-negative, rod-shaped, and flagellated bacterium was identified as the primary culprit for BPB disease. In 2019, the disease was reported in 18 countries, and to date, it has been spotted in 26 countries. Rice yield has been reduced by up to 75% worldwide due to this disease. Interestingly, the biocontrol strategy offers a promising alternative to manage BPB disease. This review summarizes the management status of BPB disease using biological control agents (BCA). Bacteria from the genera Bacillus, Burkholderia, Enterobacter, Pantoea, Pseudomonas, and Streptomyces have been examined as BCA under in vitro, glasshouse, and field conditions. Besides bacteria, bacteriophages have also been reported to reduce BPB pathogens under in vitro and glasshouse conditions. Here, the overview of the mechanisms of bacteria and bacteriophages in controlling BPB pathogens is addressed. The applications of BCA using various delivery methods could effectively manage BPB disease to benefit the agroecosystems and food security.
Collapse
Affiliation(s)
- Mohamad S Ngalimat
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Erneeza Mohd Hata
- Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Dzarifah Zulperi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti I Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd R Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur A I Mohd Zainudin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor B Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd T Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Attaluri S, Dharavath R. Novel plant disease detection techniques-a brief review. Mol Biol Rep 2023; 50:9677-9690. [PMID: 37823933 DOI: 10.1007/s11033-023-08838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant pathogens cause severe losses to agricultural yield worldwide. Tracking plant health and early disease detection is important to reduce the disease spread and thus economic loss. Though visual scouting has been practiced from former times, detection of asymptomatic disease conditions is difficult. So, DNA-based and serological methods gained importance in plant disease detection. The progress in advanced technologies challenges the development of rapid, non-invasive, and on-field detection techniques such as spectroscopy. This review highlights various direct and indirect ways of detecting plant diseases like Enzyme-linked immunosorbent assay, Lateral flow assays, Polymerase chain reaction, spectroscopic techniques and biosensors. Although these techniques are sensitive and pathogen-specific, they are more laborious and time-intensive. As a consequence, a lot of interest is gained in in-field adaptable point-of-care devices with artificial intelligence-assisted pathogen detection at an early stage. More recently computer-aided techniques like neural networks are gaining significance in plant disease detection by image processing. In addition, a concise report on the latest progress achieved in plant disease detection techniques is provided.
Collapse
|
5
|
Aiying W, Ju L, Cilin W, Yuxuan H, Baojun Y, Jian T, Shuhua L. Establishment and application of the Recombinase-Aided Amplification-Lateral Flow Dipstick detection method for Pantoea ananatis on rice. AUSTRALASIAN PLANT PATHOLOGY : APP 2023; 52:1-9. [PMID: 37363287 PMCID: PMC10193322 DOI: 10.1007/s13313-023-00918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/14/2023] [Indexed: 06/28/2023]
Abstract
Pantoea ananatis is a major pathogen that causes the new bacterial blight in rice, and its symptoms very similar to rice bacterial blight. Therefore, there is a dire need for an accurate and rapid method for detecting P. ananatis. In this study, an early and rapid visual detection method for P. ananatis was established. Using GyrB gene as the target sequence, an innovative recombinase-aided amplification detection system integrated with a lateral flow dipstick (RAA-LFD) was constructed. The optimized RAA-LFD detection method can be initiated at body temperature and does not rely on precise instruments. It does not require DNA extraction and can be used directly with plant tissue fluids. The results can be visualized after 10 minutes of amplification. The specificity and sensitivity tests showed that the RAA-LFD method could detect P. ananatis, whereas other common plant pathogens were not detected, and its detection sensitivity for P. ananatis DNA reached 100 copies/µL. The detection of diseased tissues indicated that this method could accurately detect P. ananatis in artificially inoculated rice tissues in the early stages of infection before symptoms. The RAA-LFD detection system established in this study is simple and fast, with visual results, excellent specificity, and high sensitivity. It is semi-quantitative and should be used for the early detection and rapid field diagnosis of new leaf blight, which provides technical support for the early warning and real-time detection of field samples.
Collapse
Affiliation(s)
- Wang Aiying
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Luo Ju
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Wang Cilin
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hou Yuxuan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yang Baojun
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Tang Jian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Liu Shuhua
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
6
|
Luna E, Lang JM, McClung A, Wamishe Y, Jia Y, Leach JE. First report of rice bacterial leaf blight disease caused by Pantoea ananatis in the United States. PLANT DISEASE 2023; 107:2214. [PMID: 36607325 DOI: 10.1094/pdis-08-22-2014-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In August 2021, bacterial leaf blight-like symptoms were observed on 14 out of 570 rice genotypes (Oryza sativa) in research field plots of global rice germplasm grown in Arkansas (eXtra Figure S1. A & B). The disease was characterized by spreading lesions on leaves, panicle sterility and reduced yield in highly susceptible, mature rice germplasm. No spread of disease to nearby plants was observed. Isolations were performed at Colorado State University, where soakates from symptomatic leaves were spread onto nutrient agar. After 72 h at 28°C, uniform, distinct, yellow-colored bacterial colonies were observed. To screen for the presence of common rice bacterial pathogens, PCR amplification directly from colonies or from DNA isolated from symptomatic field-collected leaves was performed. Primers specific for Xanthomonas oryzae pvs. oryzae and oryzicola (Lang et al., 2010), Burkholderia glumae (Echeverri-Rico et al., 2021), and Pseudomonas fuscovaginae (Ash et al., 2014) did not amplify indicating these organisms were not present. Sequencing of 16S rRNA gene (Weisburg et al., 1991) amplicons suggested the bacteria belonged to the genera Pantoea and Sphingomonas (NCBI accession no. OP683332 and OP683333, respectively). Amplicons resulting from primers specific to the gyrB gene region of P. ananatis (Kini et al., 2021) were sequenced and the fragment was compared to the P. ananatis PA13 reference genome using a BLAST analysis. One candidate (AR358) showed 100% identity with the P. ananatis gyrB region. Primers specific for Sphingomonas sp. (Bangratz et al., 2020) confirmed the second candidate (AR359) as a Sphingomonas sp. The identity of P. ananatis was confirmed by the Plant Pathogen Confirmatory Diagnostics Laboratory (Beltsville, MD, USA). To determine pathogenicity, leaves from 7-day-old seedlings of rice (Oryza sativa) cultivar Kitaake were scissor-clip inoculated (Kauffman et al., 1973) with four different treatments and compared to control leaves inoculated with sterile water. Treatments for the experiment consisted of bacterial suspensions (108 CFU/ml) of the two candidate organisms, P. ananatis (strain AR358) or Sphingomonas sp. (strain AR359), individually or in a 1:1 ratio of P. ananatis:Sphingomonas sp., or soakate from infected field tissue. Lesions similar to those observed in the field were only detected on leaves inoculated with P. ananatis or infected field tissue soakate at 7-days post-inoculation (eXtra Figure S1. C). Bacteria were recovered from the leaves of the artificially inoculated seedlings from three treatments (P. ananatis, P. ananatis:Sphingomonas sp. and soakate from the infected field tissue) and were determined to be P. ananatis based on colony morphology, amplification of 16s rRNA, and gyrB sequence data. Our results confirm the pathogenicity of P. ananatis to rice and fulfill Koch's postulates. P. ananatis was also recovered from several similarly diseased rice breeding lines at the University of Arkansas System Division of Agriculture Rice Research and Extension Center. We conclude that P. ananatis is the causal pathogen for leaf blight-like symptoms observed in the global rice cultivars grown in Arkansas. P. ananatis was previously reported as a pathogen on rice in several rice growing regions, including China (Yu et al., 2021), India (Reshma et al., 2022), and Africa (Kini et al., 2017), however, this is the first report of P. ananatis as a pathogen of rice in the United States.
Collapse
Affiliation(s)
- Emily Luna
- Colorado State University, Department of Agricultural Biology, Fort Collins, Colorado, United States;
| | - Jillian Marie Lang
- Colorado State University, Department of Agricultural Biology, Fort Collins, Colorado, United States;
| | - Anna McClung
- USDA-ARS Dale Bumpers National Rice Research Center, 57722, Stuttgart, Arkansas, United States;
| | - Yeshi Wamishe
- University of Arkansas System Division of Agriculture Rice Research and Extension Center, Stuttgart, Arkansas, United States;
| | - Yulin Jia
- USDA-ARS Dale Bumpers National Rice Research Center, 57722, Stuttgart, Arkansas, United States;
| | - Jan E Leach
- Colorado State University, Department of Agricultural Biology, Fort Collins, Colorado, United States;
| |
Collapse
|
7
|
Wang J, Li X, Sun X, Huo X, Li M, Han C, Liu A. Establishment and Application of a Multiplex PCR Assay for Detection of Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum in Peanut. Mol Biotechnol 2023:10.1007/s12033-022-00647-1. [PMID: 36607498 DOI: 10.1007/s12033-022-00647-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Southern blight, stem rot, and root rot are serious soil-borne fungal diseases of peanut, which are caused by Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum, respectively. These diseases are difficult to be diagnosed in early stage of infection, causing the optimal treatment period was often missed. Therefore, establishing a rapid detection system is of great significance for early prevention of peanut soil-borne fungal diseases. Here, we have invented a multiplex PCR detection system to detect fungal pathogens of peanut southern blight, stem rot, and root rot at the same time. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 1005-bp (F. oxysporum), 238-bp (L. theobromae), and 638-bp (S. rolfsii). The detection limit for the single and multiplex PCR primer sets was 1 ng of template DNA under in vitro conditions. Amplification of fungi of non-target species yielded no non-specific products. The validation showed that the multiplex PCR could effectively detect single and mixed infections in field samples. Overview, this study proved that this mPCR assay was a rapid, reliable, and simple tool for the simultaneous detection of three important peanut soil-borne diseases, which facilitated prompt treatment and prevention of peanut root diseases.
Collapse
Affiliation(s)
- Jin Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xueying Sun
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xuelin Huo
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Meiqi Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Han
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Aixin Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
8
|
Barro M, Wonni I, Simonin M, Kassankogno AI, Klonowska A, Moulin L, Béna G, Somda I, Brunel C, Tollenaere C. The impact of the rice production system (irrigated vs lowland) on root-associated microbiome from farmer's fields in western Burkina Faso. FEMS Microbiol Ecol 2022; 98:6648705. [PMID: 35867879 DOI: 10.1093/femsec/fiac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Due to their potential applications for food safety, there is a growing interest in rice root-associated microbial communities, but some systems remain understudied. Here, we compare the assemblage of root-associated microbiota in rice sampled in 19 small farmer's fields from irrigated and rainfed lowlands in Burkina Faso, using an amplicon metabarcoding approach of the 16S rRNA gene (prokaryotes, three plant sample per field) and ITS (fungi, one sample per field). In addition to the expected structure by root compartments (root vs. rhizosphere) and geographical zones, we showed that the rice production system is a major driver of microbiome structure. In irrigated systems, we found a higher diversity of prokaryotic communities from the rhizosphere and more complex co-occurrence networks, compared to rainfed lowlands, while fungal communities exhibited an opposite pattern (higher richness in rainfed lowlands). Core taxa were different between the two systems, and indicator species were identified: mostly within Bacillaceae in rainfed lowlands, and within Burkholderiaceae and Moraxellaceae in irrigated areas. Finally, a higher abundance in rainfed lowlands was found for mycorrhizal fungi (both compartments) and rhizobia (rhizosphere only). Our results highlight deep microbiome differences induced by contrasted rice production systems that should consequently be considered for microbial engineering applications.
Collapse
Affiliation(s)
- Mariam Barro
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.,INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso.,Univ Nazi Boni, Institut du Développement rural, Laboratoire des Systèmes naturels, Agrosystèmes et Ingénierie de l'Environnement (SyNAIE), Bobo-Dioulasso, Burkina Faso
| | - Issa Wonni
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Marie Simonin
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Abalo Itolou Kassankogno
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Agnieszka Klonowska
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.,INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Lionel Moulin
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gilles Béna
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Irénée Somda
- Univ Nazi Boni, Institut du Développement rural, Laboratoire des Systèmes naturels, Agrosystèmes et Ingénierie de l'Environnement (SyNAIE), Bobo-Dioulasso, Burkina Faso
| | - Caroline Brunel
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Charlotte Tollenaere
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
9
|
DNA Markers for Detection and Genotyping of Xanthomonas euroxanthea. Microorganisms 2022; 10:microorganisms10061078. [PMID: 35744598 PMCID: PMC9227330 DOI: 10.3390/microorganisms10061078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Xanthomonas euroxanthea is a bacterial species encompassing both pathogenic and non-pathogenic strains and is frequently found colonizing the same host plants as X. arboricola. This presents the need to develop a detection and genotyping assay able to track these bacteria in microbial consortia with other xanthomonads. Eight X. euroxanthea-specific DNA markers (XEA1-XEA8) were selected by comparative genomics and validated in silico regarding their specificity and consistency using BLASTn, synteny analysis, CG content, codon usage (CAI/eCAI values) and genomic proximity to plasticity determinants. In silico, the selected eight DNA markers were found to be specific and conserved across the genomes of 11 X. euroxanthea strains, and in particular, five DNA markers (XEA4, XEA5, XEA6, XEA7 and XEA8) were unfailingly found in these genomes. A multiplex of PCR targeting markers XEA1 (819 bp), XEA8 (648 bp) and XEA5 (295 bp) was shown to successfully detect X. euroxanthea down to 1 ng of DNA (per PCR reaction). The topology of trees generated with the concatenated sequences of three markers (XEA5, XEA6 and XEA8) and four housekeeping genes (gyrB, rpoD, fyuA and acnB) underlined the equal discriminatory power of these features and thus the suitability of the DNA markers to discriminate X. euroxanthea lineages. Overall, this study displays a DNA-marker-based method for the detection and genotyping of X. euroxanthea strains, contributing to monitoring for its presence in X. arboricola-colonizing habitats. The present study proposes a workflow for the selection of species-specific detection markers. Prospectively, this assay could contribute to unveil alternative host species of Xanthomonas euroxanthea; and improve the control of phytopathogenic strains.
Collapse
|
10
|
Longa CMO, Antonielli L, Bozza E, Sicher C, Pertot I, Perazzolli M. Plant organ and sampling time point determine the taxonomic structure of microbial communities associated to apple plants in the orchard environment. Microbiol Res 2022; 258:126991. [DOI: 10.1016/j.micres.2022.126991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
|
11
|
Barro M, Kassankogno AI, Wonni I, Sérémé D, Somda I, Kaboré HK, Béna G, Brugidou C, Tharreau D, Tollenaere C. Spatiotemporal Survey of Multiple Rice Diseases in Irrigated Areas Compared to Rainfed Lowlands in the Western Burkina Faso. PLANT DISEASE 2021; 105:3889-3899. [PMID: 34142847 DOI: 10.1094/pdis-03-21-0579-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiple constraints affect rice yields in West Africa. Among these constraints are viral, bacterial, and fungal pathogens. We aimed to describe the spatiotemporal patterns of occurrence and incidence of multiple rice diseases in farmers' fields in contrasting rice growing systems in the western Burkina Faso. For this purpose, we selected a set of three pairs of sites, each comprising an irrigated area and a neighboring rainfed lowland, and studied them over four consecutive years. We first performed interviews with the rice farmers to better characterize the management practices at the different sites. This study revealed that the transplanting of rice and the possibility of growing rice twice a year are restricted to irrigated areas, while other practices, such as the use of registered rice cultivars, fertilization, and pesticides, are not specific but differ between the two rice growing systems. Then, we performed symptom observations at these study sites to monitor the following four diseases: yellow mottle disease, Bacterial Leaf Streak (BLS), rice leaf blast, and brown spot. The infection rates were found to be higher in irrigated areas than in rainfed lowlands, both when analyzing all observed symptoms together (any of the four diseases) and when specifically considering each of the two diseases: BLS and rice leaf blast. Brown spot was particularly prevalent in all six study sites, while yellow mottle disease was particularly structured geographically. Various diseases were frequently found together in the same field (co-occurrence) or even on the same plant (coinfection), especially in irrigated areas.
Collapse
Affiliation(s)
- Mariam Barro
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
- Université Nazi Boni, Institut du Développement Rural, Laboratoire des Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (SyNAIE), Bobo-Dioulasso, Burkina Faso
| | - Abalo Itolou Kassankogno
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Issa Wonni
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Drissa Sérémé
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Irénée Somda
- Université Nazi Boni, Institut du Développement Rural, Laboratoire des Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (SyNAIE), Bobo-Dioulasso, Burkina Faso
| | - Hilaire Kouka Kaboré
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR PHIM, 34390 Montpellier, France
| | - Gilles Béna
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Christophe Brugidou
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Didier Tharreau
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR PHIM, 34390 Montpellier, France
| | - Charlotte Tollenaere
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
12
|
Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. Microorganisms 2021; 9:microorganisms9040682. [PMID: 33810209 PMCID: PMC8065915 DOI: 10.3390/microorganisms9040682] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.
Collapse
|
13
|
Emerging infectious diseases threatening food security and economies in Africa. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2020.100479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|