1
|
Sanfeliu-Cerdán N, Krieg M. The mechanobiology of biomolecular condensates. BIOPHYSICS REVIEWS 2025; 6:011310. [PMID: 40160200 PMCID: PMC11952833 DOI: 10.1063/5.0236610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
The central goal of mechanobiology is to understand how the mechanical forces and material properties of organelles, cells, and tissues influence biological processes and functions. Since the first description of biomolecular condensates, it was hypothesized that they obtain material properties that are tuned to their functions inside cells. Thus, they represent an intriguing playground for mechanobiology. The idea that biomolecular condensates exhibit diverse and adaptive material properties highlights the need to understand how different material states respond to external forces and whether these responses are linked to their physiological roles within the cell. For example, liquids buffer and dissipate, while solids store and transmit mechanical stress, and the relaxation time of a viscoelastic material can act as a mechanical frequency filter. Hence, a liquid-solid transition of a condensate in the force transmission pathway can determine how mechanical signals are transduced within and in-between cells, affecting differentiation, neuronal network dynamics, and behavior to external stimuli. Here, we first review our current understanding of the molecular drivers and how rigidity phase transitions are set forth in the complex cellular environment. We will then summarize the technical advancements that were necessary to obtain insights into the rich and fascinating mechanobiology of condensates, and finally, we will highlight recent examples of physiological liquid-solid transitions and their connection to specific cellular functions. Our goal is to provide a comprehensive summary of the field on how cells harness and regulate condensate mechanics to achieve specific functions.
Collapse
Affiliation(s)
- Neus Sanfeliu-Cerdán
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Krieg
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
2
|
Raeburn CB, Ormsby AR, Cox D, Gerak CA, Makhoul C, Moily NS, Ebbinghaus S, Dickson A, McColl G, Hatters DM. A biosensor of protein foldedness identifies increased "holdase" activity of chaperones in the nucleus following increased cytosolic protein aggregation. J Biol Chem 2022; 298:102158. [PMID: 35724963 PMCID: PMC9283929 DOI: 10.1016/j.jbc.2022.102158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/19/2022] Open
Abstract
Chaperones and other quality control machinery guard proteins from inappropriate aggregation, which is a hallmark of neurodegenerative diseases. However, how the systems that regulate the 'foldedness' of the proteome remain buffered under stress conditions and in different cellular compartments remains incompletely understood. In this study, we applied a FRET-based strategy to explore how well quality control machinery protects against the misfolding and aggregation of "bait" biosensor proteins, made from the prokaryotic ribonuclease barnase, in the nucleus and cytosol of HEK293T cells. We found those barnase biosensors prone to misfolding, were less engaged by quality control machinery and more prone to inappropriate aggregation in the nucleus as compared to the cytosol, and that these effects could be regulated by chaperone Hsp70-related machinery. Furthermore, aggregation of mutant huntingtin exon 1 protein (Httex1) in the cytosol appeared to outcompete and thus prevented the engagement of quality control machinery with the biosensor in the cytosol. This effect correlated with reduced levels of DNAJB1 and HSPA1A chaperones in the cell outside those sequestered to the aggregates, particularly in the nucleus. Unexpectedly, we found Httex1 aggregation also increased the apparent engagement of the barnase biosensor with quality control machinery in the nucleus suggesting an independent implementation of 'holdase' activity of chaperones other than DNAJB1 and HSPA1A. Collectively these results suggest that proteostasis stress can trigger a rebalancing of chaperone abundance in different subcellular compartments through a dynamic network involving different chaperone-client interactions.
Collapse
Affiliation(s)
- Candice B Raeburn
- Department of Biochemistry and Pharmacology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Angelique R Ormsby
- Department of Biochemistry and Pharmacology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Dezerae Cox
- Department of Biochemistry and Pharmacology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Chloe A Gerak
- Department of Biochemistry and Pharmacology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Christian Makhoul
- Department of Biochemistry and Pharmacology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Nagaraj S Moily
- Department of Biochemistry and Pharmacology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Simon Ebbinghaus
- Physical and Theoretical Chemistry, TU Braunschweig, 38106 Germany and Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| | - Alex Dickson
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Gawain McColl
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and University of Melbourne, Parkville, VIC, Australia
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Gräfenstein A, Rumancev C, Pollak R, Hämisch B, Galbierz V, Schroeder WH, Garrevoet J, Falkenberg G, Vöpel T, Huber K, Ebbinghaus S, Rosenhahn A. Spatial Distribution of Intracellular Ion Concentrations in Aggregate-Forming HeLa Cells Analyzed by μ-XRF Imaging. ChemistryOpen 2022; 11:e202200024. [PMID: 35363437 PMCID: PMC8973254 DOI: 10.1002/open.202200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Protein aggregation is a hallmark of several severe neurodegenerative disorders such as Huntington's, Parkinson's, or Alzheimer's disease. Metal ions play a profound role in protein aggregation and altered metal-ion homeostasis is associated with disease progression. Here we utilize μ-X-ray fluorescence imaging in combination with rapid freezing to resolve the elemental distribution of phosphorus, sulfur, potassium, and zinc in huntingtin exon-1-mYFP expressing HeLa cells. Using quantitative XRF analysis, we find a threefold increase in zinc and a 10-fold enrichment of potassium that can be attributed to cellular stress response. While the averaged intracellular ion areal masses are significantly different in aggregate-containing cells, a local intracellular analysis shows no different ion content at the location of intracellular inclusion bodies. The results are compared to corresponding experiments on HeLa cells forming pseudoisocyanine chloride aggregates. As those show similar results, changes in ion concentrations are not exclusively linked to huntingtin exon-1 amyloid formation.
Collapse
Affiliation(s)
- Andreas Gräfenstein
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| | - Christoph Rumancev
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| | - Roland Pollak
- Institute of Physical and Theoretical ChemistryTU BraunschweigRebenring 5638106BraunschweigGermany
| | | | - Vanessa Galbierz
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
| | - Walter H. Schroeder
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
- Nanotech ConsultingLiblarer Strasse 850321BrühlGermany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
| | | | - Tobias Vöpel
- Physical Chemistry IIRuhr University Bochum44801BochumGermany
| | - Klaus Huber
- Physical ChemistryUniversity of Paderborn33098PaderbornGermany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical ChemistryTU BraunschweigRebenring 5638106BraunschweigGermany
| | - Axel Rosenhahn
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| |
Collapse
|
4
|
Sui X, Radwan M, Cox D, Hatters DM. Probing Protein Solubility Patterns with Proteomics for Insight into Network Dynamics. Methods Mol Biol 2022; 2428:261-275. [PMID: 35171485 DOI: 10.1007/978-1-0716-1975-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteome solubility contains latent information on the nature of protein interaction networks in cells and changes in solubility can provide information on rewiring of networks. Here, we report a simple one-step ultracentrifugation method to separate the soluble and insoluble fraction of the proteome. The method involves quantitative proteomics and a bioinformatics strategy to analyze the changes that arise. Because protein solubility changes are also associated with protein misfolding and aggregation in neurodegenerative disease, we also include a protocol for isolating disease-associated protein aggregates with pulse shape analysis (PulSA) by flow cytometry as a complementary approach that can be used alongside the more general measure of solubility or as a stand-alone approach.
Collapse
Affiliation(s)
- Xiaojing Sui
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | - Mona Radwan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Dezerae Cox
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils. J Biol Chem 2021; 297:101194. [PMID: 34537246 PMCID: PMC8551513 DOI: 10.1016/j.jbc.2021.101194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Membraneless organelles (MLOs) are vital and dynamic reaction centers in cells that compartmentalize the cytoplasm in the absence of a membrane. Multivalent interactions between protein low-complexity domains contribute to MLO organization. Previously, we used computational methods to identify structural motifs termed low-complexity amyloid-like reversible kinked segments (LARKS) that promote phase transition to form hydrogels and that are common in human proteins that participate in MLOs. Here, we searched for LARKS in the proteomes of six model organisms: Homo sapiens, Drosophila melanogaster, Plasmodium falciparum, Saccharomyces cerevisiae, Mycobacterium tuberculosis, and Escherichia coli to gain an understanding of the distribution of LARKS in the proteomes of various species. We found that LARKS are abundant in M. tuberculosis, D. melanogaster, and H. sapiens but not in S. cerevisiae or P. falciparum. LARKS have high glycine content, which enables kinks to form as exemplified by the known LARKS-rich amyloidogenic structures of TDP43, FUS, and hnRNPA2, three proteins that are known to participate in MLOs. These results support the idea of LARKS as an evolved structural motif. Based on these results, we also established the LARKSdb Web server, which permits users to search for LARKS in their protein sequences of interest.
Collapse
|
6
|
Catanese A, Rajkumar S, Sommer D, Freisem D, Wirth A, Aly A, Massa‐López D, Olivieri A, Torelli F, Ioannidis V, Lipecka J, Guerrera IC, Zytnicki D, Ludolph A, Kabashi E, Mulaw MA, Roselli F, Böckers TM. Synaptic disruption and CREB-regulated transcription are restored by K + channel blockers in ALS. EMBO Mol Med 2021; 13:e13131. [PMID: 34125498 PMCID: PMC8261490 DOI: 10.15252/emmm.202013131] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which is still missing effective therapeutic strategies. Although manipulation of neuronal excitability has been tested in murine and human ALS models, it is still under debate whether neuronal activity might represent a valid target for efficient therapies. In this study, we exploited a combination of transcriptomics, proteomics, optogenetics and pharmacological approaches to investigate the activity-related pathological features of iPSC-derived C9orf72-mutant motoneurons (MN). We found that human ALSC9orf72 MN are characterized by accumulation of aberrant aggresomes, reduced expression of synaptic genes, loss of synaptic contacts and a dynamic "malactivation" of the transcription factor CREB. A similar phenotype was also found in TBK1-mutant MN and upon overexpression of poly(GA) aggregates in primary neurons, indicating a strong convergence of pathological phenotypes on synaptic dysregulation. Notably, these alterations, along with neuronal survival, could be rescued by treating ALS-related neurons with the K+ channel blockers Apamin and XE991, which, respectively, target the SK and the Kv7 channels. Thus, our study shows that restoring the activity-dependent transcriptional programme and synaptic composition exerts a neuroprotective effect on ALS disease progression.
Collapse
Affiliation(s)
- Alberto Catanese
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Daniel Sommer
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Dennis Freisem
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Alexander Wirth
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Amr Aly
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - David Massa‐López
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Ulm siteUlmGermany
| | - Andrea Olivieri
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Federica Torelli
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Valentin Ioannidis
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
| | - Joanna Lipecka
- Proteomics platform NeckerINSERM US24/CNRS UMS3633Université de Paris – Structure Fédérative de Recherche NeckerParisFrance
| | - Ida Chiara Guerrera
- Proteomics platform NeckerINSERM US24/CNRS UMS3633Université de Paris – Structure Fédérative de Recherche NeckerParisFrance
| | - Daniel Zytnicki
- SPPIN ‐ Saints‐Pères Paris Institute for the NeurosciencesCNRSUniversité de ParisParis, Paris
| | - Albert Ludolph
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Ulm siteUlmGermany
- Department of NeurologyUlm University School of MedicineUlmGermany
| | - Edor Kabashi
- Institute of Translational Research for Neurological DisordersINSERM UMR 1163Imagine InstituteParisFrance
| | - Medhanie A Mulaw
- Internal Medicine I and Institute of Molecular Medicine and Stem Cell AgingMedical FacultyUniversity Hospital UlmUniversity of Ulm UniversityUlmGermany
| | - Francesco Roselli
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Ulm siteUlmGermany
- Department of NeurologyUlm University School of MedicineUlmGermany
| | - Tobias M Böckers
- Institute of Anatomy and Cell BiologyUlm University School of MedicineUlmGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Ulm siteUlmGermany
| |
Collapse
|