1
|
Nekanti U, Sakthivel PS, Zahedi A, Creasman DA, Nishi RA, Dumont CM, Piltti KM, Guardamondo GL, Hernandez N, Chen X, Song H, Lin X, Martinez J, On L, Lakatos A, Pawar K, David BT, Guo Z, Seidlits SK, Xu X, Shea LD, Cummings BJ, Anderson AJ. Multichannel bridges and NSC synergize to enhance axon regeneration, myelination, synaptic reconnection, and recovery after SCI. NPJ Regen Med 2024; 9:12. [PMID: 38499577 PMCID: PMC10948859 DOI: 10.1038/s41536-024-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
Regeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair. While transplanted human neural stem cells (hNSC) myelinate axons after spinal cord injury (SCI), hNSC fate is highly influenced by the SCI inflammatory microenvironment, also limiting functional repair. Accordingly, we investigated the combination of PLG scaffold bridges with hNSC to improve histological and functional outcome after SCI. In vitro, hNSC culture on a PLG scaffold increased oligodendroglial lineage selection after inflammatory challenge. In vivo, acute PLG bridge implantation followed by chronic hNSC transplantation demonstrated a robust capacity of donor human cells to migrate into PLG bridge channels along regenerating axons and integrate into the host spinal cord as myelinating oligodendrocytes and synaptically integrated neurons. Axons that regenerated through the PLG bridge formed synaptic circuits that connected the ipsilateral forelimb muscle to contralateral motor cortex. hNSC transplantation significantly enhanced the total number of regenerating and myelinated axons identified within the PLG bridge. Finally, the combination of acute bridge implantation and hNSC transplantation exhibited robust improvement in locomotor recovery. These data identify a successful strategy to enhance neurorepair through a temporally layered approach using acute bridge implantation and chronic cell transplantation to spare tissue, promote regeneration, and maximize the function of new axonal connections.
Collapse
Affiliation(s)
- Usha Nekanti
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
| | - Pooja S Sakthivel
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Atena Zahedi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Dana A Creasman
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katja M Piltti
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Glenn L Guardamondo
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Norbert Hernandez
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Xingyuan Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Hui Song
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Xiaoxiao Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Joshua Martinez
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Lillian On
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Anita Lakatos
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Kiran Pawar
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Zhiling Guo
- Department of Medicine & Susan Samueli Integrative Health Institute, University of California, Irvine, CA, USA
| | - Stephanie K Seidlits
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Center for Neural Circuit Mapping, University of California Irvine, Irvine, CA, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian J Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
- Institute for Memory Impairments & Neurological Disorder, University of California Irvine, Irvine, CA, USA
| | - Aileen J Anderson
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
- Institute for Memory Impairments & Neurological Disorder, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Frantsuzov R, Mondal S, Walsh CM, Reynolds JP, Dooley D, MacManus DB. A finite element model of contusion spinal cord injury in rodents. J Mech Behav Biomed Mater 2023; 142:105856. [PMID: 37087955 DOI: 10.1016/j.jmbbm.2023.105856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Traumatic spinal cord injuries result from high impact forces acting on the spine and are proceeded by an extensive secondary inflammatory response resulting in motor, sensory, and autonomic dysfunction. Experimental in vivo traumatic spinal cord injuries in rodents using a contusion model have been extremely useful in elucidating the underlying pathophysiology of these injuries. However, the relationship between the pathophysiology and the biomechanical factors is still not well understood. Therefore, the aim of this research is to provide a comprehensive analysis of the biomechanics of traumatic spinal cord injury in a rat contusion model. This is achieved through the development and validation of a finite element model of the thoracic rat spinal cord and subsequently simulating controlled cortical impact-induced traumatic spinal cord injury. The effects of impactor velocity, depth, and geometry on the resulting stresses and strains within the spinal cord are investigated. Our results show that increasing impactor depth results in larger stresses and strains within the spinal cord tissue as expected. Further, for the first time ever our results show that impactor geometry (spherical versus cylindrical) plays an important role in the distribution and magnitude of stresses and strains within the cord. Therefore, finite element modelling can be a powerful tool used to predict stresses and strains that occur in spinal cord tissue during trauma.
Collapse
Affiliation(s)
- Roman Frantsuzov
- School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Subrata Mondal
- School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Ciara M Walsh
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - James P Reynolds
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Dearbhaile Dooley
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - David B MacManus
- School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; MEDeng Research Centre, Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
4
|
Stewart AN, Jones LAT, Gensel JC. Improving translatability of spinal cord injury research by including age as a demographic variable. Front Cell Neurosci 2022; 16:1017153. [PMID: 36467608 PMCID: PMC9714671 DOI: 10.3389/fncel.2022.1017153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pre-clinical and clinical spinal cord injury (SCI) studies differ in study design, particularly in the demographic characteristics of the chosen population. In clinical study design, criteria such as such as motor scores, neurological level, and severity of injury are often key determinants for participant inclusion. Further, demographic variables in clinical trials often include individuals from a wide age range and typically include both sexes, albeit historically most cases of SCI occur in males. In contrast, pre-clinical SCI models predominately utilize young adult rodents and typically use only females. While it is often not feasible to power SCI clinical trials to test multi-variable designs such as contrasting different ages, recent pre-clinical findings in SCI animal models have emphasized the importance of considering age as a biological variable prior to human experiments. Emerging pre-clinical data have identified case examples of treatments that diverge in efficacy across different demographic variables and have elucidated several age-dependent effects in SCI. The extent to which these differing or diverging treatment responses manifest clinically can not only complicate statistical findings and trial interpretations but also may be predictive of worse outcomes in select clinical populations. This review highlights recent literature including age as a biological variable in pre-clinical studies and articulates the results with respect to implications for clinical trials. Based on emerging unpredictable treatment outcomes in older rodents, we argue for the importance of including age as a biological variable in pre-clinical animal models prior to clinical testing. We believe that careful analyses of how age interacts with SCI treatments and pathophysiology will help guide clinical trial design and may improve both the safety and outcomes of such important efforts.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Linda A. T. Jones
- Center for Outcomes and Measurement, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - John C. Gensel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States,*Correspondence: John C. Gensel,
| |
Collapse
|
5
|
Perovic D, Milavic M, Dokuzovic S, Krezic I, Gojkovic S, Vranes H, Bebek I, Bilic V, Somun N, Brizic I, Skorak I, Hriberski K, Sikiric S, Lovric E, Strbe S, Kubat M, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Novel Therapeutic Effects in Rat Spinal Cord Injuries: Recovery of the Definitive and Early Spinal Cord Injury by the Administration of Pentadecapeptide BPC 157 Therapy. Curr Issues Mol Biol 2022; 44:1901-1927. [PMID: 35678659 PMCID: PMC9164058 DOI: 10.3390/cimb44050130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
Recently, marked therapeutic effects pertaining to the recovery of injured rat spinal cords (1 min compression injury of the sacrocaudal spinal cord (S2-Co1) resulting in tail paralysis) appeared after a single intraperitoneal administration of the stable gastric pentadecapeptide BPC 157 at 10 min post-injury. Besides the demonstrated rapid and sustained recovery (1 year), we showed the particular points of the immediate effect of the BPC 157 therapy that began rapidly after its administration, (i) soon after injury (10 min), or (ii) later (4 days), in the rats with a definitive spinal cord injury. Specifically, in counteracting spinal cord hematoma and swelling, (i) in rats that had undergone acute spinal cord injury, followed by intraperitoneal BPC 157 application at 10 min, we focused on the first 10-30 min post-injury period (assessment of gross, microscopic, and gene expression changes). Taking day 4 post-injury as the definitive injury, (ii) we focused on the immediate effects after the BPC 157 intragastric application over 20 min of the post-therapy period. Comparable long-time recovery was noted in treated rats which had definitive tail paralysis: (iii) the therapy was continuously given per orally in drinking water, beginning at day 4 after injury and lasting one month after injury. BPC 157 rats presented only discrete edema and minimal hemorrhage and increased Nos1, Nos2, and Nos3 values (30 min post-injury, (i)) or only mild hemorrhage, and only discrete vacuolation of tissue (day 4, (ii)). In the day 4-30 post-injury study (iii), BPC 157 rats rapidly presented tail function recovery, and no demyelination process (Luxol fast blue staining).
Collapse
Affiliation(s)
- Darko Perovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
- Department of Surgery, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (S.S.); (E.L.); (S.S.)
| | - Stjepan Dokuzovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Igor Bebek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Vide Bilic
- Clinical Hospital of Traumatology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
| | - Nenad Somun
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Ivan Brizic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Ivan Skorak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Klaudija Hriberski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (S.S.); (E.L.); (S.S.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (S.S.); (E.L.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Milovan Kubat
- Department of Forensic Medicine and Criminology, School of Medicine, 10000 Zagreb, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (S.S.); (E.L.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (S.S.); (E.L.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.P.); (S.D.); (I.K.); (S.G.); (H.V.); (I.B.); (N.S.); (I.B.); (I.S.); (K.H.); (S.S.); (A.B.B.)
| |
Collapse
|
6
|
Stewart A, Glaser E, Mott CA, Bailey WM, Sulllivan PG, Patel S, Gensel J. Advanced Age and Neurotrauma Diminish Glutathione and Impair Antioxidant Defense after Spinal Cord Injury. J Neurotrauma 2022; 39:1075-1089. [PMID: 35373589 PMCID: PMC9347421 DOI: 10.1089/neu.2022.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Andrew Stewart
- University of Kentucky, Physiology, 741 S. Limestone Street, BBSRB B483, Lexington, Kentucky, United States, 40536-0509,
| | - Ethan Glaser
- University of Kentucky, Physiology, Lexington, Kentucky, United States,
| | - Caitlin A Mott
- University of Kentucky, Physiology, Lexington, Kentucky, United States,
| | - William M Bailey
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Physiology, Lexington, Kentucky, United States
| | - Patrick G Sulllivan
- University of Kentucky College of Medicine, Spinal Cord & Brain Injury Research Cent, 475 BBSRB, Lexington, United States, 40536-0509,
| | - Samir Patel
- University of Kentucky, 4530, Spinal Cord and Brain Injury Research Center, Physiology, Lexington, Kentucky, United States
| | - John Gensel
- University of Kentucky, Physiology, 741 S. Limestone Street, B436 BBSRB, Lexington, Kentucky, United States, 40536-0509
| |
Collapse
|
7
|
Anatomical and behavioral outcomes following a graded hemi-contusive cervical spinal cord injury model in mice. Behav Brain Res 2022; 419:113698. [PMID: 34856301 DOI: 10.1016/j.bbr.2021.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND A graded hemi-contusion spinal cord injury produces complex anatomical deformation of the spinal cord parenchyma. The relationship between lesion severity and behavioral consequences in a novel contusion mouse model remains unknown. PURPOSE We aimed to establish a graded cervical hemi-contusion spinal cord injury model in mice and investigate the correlation between graded anatomical damage to the spinal cord and resulting behavioral impairments. METHODS Thirty-two mice were divided into groups of 1.2 mm, 1.5 mm and sham. The tip of an impactor with a diameter of 1 mm was utilized to compress the left dorsal cord of C5 by 1.2 mm or 1.5 mm at a speed of 300 mm/s. Forelimb motor function was evaluated using rearing, grooming and grip-strength tests before and after the injuries. Histologically the area of white matter sparing, gray matter sparing and lesion area were quantified at 6-week-post-injury. RESULTS Behavioral assessments showed a more severe forelimb functional deficit in 1.5 mm contusion displacements relative to 1.2 mm contusion displacements after injury. The 1.2 mm hemi-contusion mainly caused damage to the dorsal fasciculus, ventral and dorsal horn, while the 1.5 mm hemi-contusion lead to additional damage extending to ventral fasciculus. Sparing of the gray and white matter at the epicenter was 36.8 ± 2.4% and 12.4 ± 2.6% in the 1.2 mm group, and 27.6 ± 4.0% and 4.1 ± 2.2% in the 1.5 mm group, respectively. Furthermore, the lesion area was 20.8 ± 3.0% and 36.0 ± 2.1% in the 1.2 mm and 1.5 mm groups, respectively. There was a significant correlation between the performance in the grooming test and white matter sparing, and between grip-test strength and gray matter sparing. CONCLUSION The present study demonstrates that a hemi-contusion cervical spinal cord injury in mice can be graded by contusion displacement and that there is a correlation between anatomical and behavioral outcomes. This study provides a means for determining the severity of lesions in a contusion mouse model.
Collapse
|
8
|
Martín-López M, González-Muñoz E, Gómez-González E, Sánchez-Pernaute R, Márquez-Rivas J, Fernández-Muñoz B. Modeling chronic cervical spinal cord injury in aged rats for cell therapy studies. J Clin Neurosci 2021; 94:76-85. [PMID: 34863466 DOI: 10.1016/j.jocn.2021.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
With an expanding elderly population, an increasing number of older adults will experience spinal cord injury (SCI) and might be candidates for cell-based therapies, yet there is a paucity of research in this age group. The objective of the present study was to analyze how aged rats tolerate behavioral testing, surgical procedures, post-operative complications, intra-spinal cell transplantation and immunosuppression, and to examine the effectiveness of human iPSC-derived Neural Progenitor Cells (IMR90-hiPSC-NPCs) in a model of SCI. We performed behavioral tests in rats before and after inducing cervical hemi-contusions at C4 level with a fourth-generation Ohio State University Injury Device. Four weeks later, we injected IMR90-hiPSC-NPCs in animals that were immunosuppressed by daily cyclosporine injection. Four weeks after injection we analyzed locomotor behavior and mortality, and histologically assessed the survival of transplanted human NPCs. As rats aged, their success at completing behavioral tests decreased. In addition, we observed high mortality rates during behavioral training (41.2%), after cervical injury (63.2%) and after cell injection (50%). Histological analysis revealed that injected cells survived and remained at and around the grafted site and did not cause tumors. No locomotor improvement was observed in animals four weeks after IMR90-hiPSC-NPC transplantation. Our results show that elderly rats are highly vulnerable to interventions, and thus large groups of animals must be initially established to study the potential efficacy of cell-based therapies in age-related chronic myelopathies.
Collapse
Affiliation(s)
- María Martín-López
- Unidad de Producción y Reprogramación celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain; Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Programa de Doctorado en Biología Molecular, Biomedicina e Investigación Clínica, Universidad de Sevilla, Sevilla, Spain.
| | - Elena González-Muñoz
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29071 Málaga, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 29071 Málaga, Spain.
| | - Emilio Gómez-González
- Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Grupo de Física Interdisciplinar, Departamento de Física Aplicada III, ETS Ingeniería, Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Rosario Sánchez-Pernaute
- Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain.
| | - Javier Márquez-Rivas
- Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain.
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain.
| |
Collapse
|
9
|
Martin-Lopez M, Fernandez-Muñoz B, Canovas S. Pluripotent Stem Cells for Spinal Cord Injury Repair. Cells 2021; 10:cells10123334. [PMID: 34943842 PMCID: PMC8699436 DOI: 10.3390/cells10123334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition of the central nervous system that strongly reduces the patient’s quality of life and has large financial costs for the healthcare system. Cell therapy has shown considerable therapeutic potential for SCI treatment in different animal models. Although many different cell types have been investigated with the goal of promoting repair and recovery from injury, stem cells appear to be the most promising. Here, we review the experimental approaches that have been carried out with pluripotent stem cells, a cell type that, due to its inherent plasticity, self-renewal, and differentiation potential, represents an attractive source for the development of new cell therapies for SCI. We will focus on several key observations that illustrate the potential of cell therapy for SCI, and we will attempt to draw some conclusions from the studies performed to date.
Collapse
Affiliation(s)
- Maria Martin-Lopez
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain;
- Correspondence: (M.M.-L.); (S.C.)
| | - Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain;
| | - Sebastian Canovas
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain
- Correspondence: (M.M.-L.); (S.C.)
| |
Collapse
|
10
|
Isvoranu G, Manole E, Neagu M. Gait Analysis Using Animal Models of Peripheral Nerve and Spinal Cord Injuries. Biomedicines 2021; 9:1050. [PMID: 34440252 PMCID: PMC8392642 DOI: 10.3390/biomedicines9081050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
The present review discusses recent data regarding rodent models of spinal cord and peripheral nerve injuries in terms of gait analysis using the CatWalk system (CW), an automated and exceptionally reliable system for assessing gait abnormalities and motor coordination. CW is a good tool for both studying improvements in the walking of animals after suffering a peripheral nerve and spinal cord lesion and to select the best therapies and procedures after tissue destruction, given that it provides objective and quantifiable data. Most studies using CW for gait analysis that were published in recent years focus on injuries inflicted in the peripheral nerve, spinal cord, and brain. CW has been used in the assessment of rodent motor function through high-resolution videos, whereby specialized software was used to measure several aspects of the animal's gait, and the main characteristics of the automated system are presented here. CW was developed to assess footfall and gait changes, and it can calculate many parameters based on footprints and time. However, given the multitude of parameters, it is necessary to evaluate which are the most important under the employed experimental circumstances. By selecting appropriate animal models and evaluating peripheral nerve and spinal cord lesion regeneration using standardized methods, suggestions for new therapies can be provided, which represents the translation of this methodology into clinical application.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Husbandry Unit, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania;
| | - Emilia Manole
- Laboratory of Cellular Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
| | - Monica Neagu
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|