1
|
Corsetti S, Chambers B, Blache D, Bencini R. Captive-raised western ringtail possum (Pseudocheirus occidentalis) with a bold personality have higher survival rates when released into the wild. Sci Rep 2024; 14:20110. [PMID: 39209892 PMCID: PMC11362156 DOI: 10.1038/s41598-024-67726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
We tested if the personality of captive-raised western ringtail possums (Pseudocheirus occidentalis), and the impact of other variables would influence their survival after release using radiotelemetry. We hypothesised a greater survival for individuals: (i) bold; (ii) habituated in advance to food collected from the release area; (iii) juveniles instead of adults, because more easily tolerated by wild individuals, and (iv) released in new dreys (nests) as they would not have the strong odour of old dreys and would be less attractive to foxes. After 3 months of radio tracking, out of 143 possums released, 79 died: 51 (64.6%) were preyed upon by European red foxes (Vulpes vulpes). Bold or female individuals had higher survival rates than shy or male individuals (survival rate bold: 53%, shy: 41%, p = 0.046, hazard ratio = 0.352, 95% CI HR [0.126, 0.979]; survival rate females: 44%, males: 35%, p = 0.007, hazard ratio = 2.811, 95% CI HR [1.322, 5.976]). Shooting was a more effective fox control strategy to improve survival compared to baiting (p = 0.019, hazard ratio = 0.167, 95% CI HR [0.038, 0.742]). Our results demonstrate that the control of introduced predators is critical for the success of reintroductions of this critically endangered species.
Collapse
Affiliation(s)
- Sara Corsetti
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| | - Brian Chambers
- South West NRM, 1 Verschuer Place, Bunbury, WA, 6230, Australia
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Roberta Bencini
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
2
|
Bilby J, Moseby K. Review of hyperdispersal in wildlife translocations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14083. [PMID: 36919937 DOI: 10.1111/cobi.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Species translocation is a common tool to reverse biodiversity loss, but it has a high failure rate. One factor that contributes to failure is postrelease hyperdispersal, which we define as the long-distance movement of individuals resulting in their failure to contribute to population establishment. We reviewed reported incidences of hyperdispersal and compared rates of hyperdispersal among taxa, population demographics, release cohorts, and success of mitigation techniques. Of 151 conservation translocations (reinforcements and reintroductions) in which animals were tracked, hyperdispersal was confirmed in 52.1% of programs. The prevalence of hyperdispersal (percentage of studies) was relatively consistent across taxa (42.9-60%), but hyperdispersal rates in birds were likely underestimated because 76.9% of bird translocations showed incidences in which birds could not be located after release, but hyperdispersal was unable to be confirmed. Eutherians exhibited a higher average incidence of hyperdispersal (percentage of hyperdispersing individuals in a cohort) of 20.2% than birds, reptiles, and marsupials (10.4%, 15.7%, and 10.3%, respectively). No significant trends were observed for sex, source population, or translocation type, but there were nonsignificant trends for males to hyperdisperse more than females and for higher incidences of hyperdispersal in reinforcements relative to reintroduction programs. Mitigation techniques included temporary confinement, supplementation of resources, and releasing animals in social groups, but only half of studies examining mitigation techniques found them useful. Hyperdispersal incidence was variable within taxa, and we advise against forming translocations strategies based on results from other species. Hyperdispersal is a significant welfare, economic, and conservation issue in translocations, and we suggest definitions, reporting, and experimental strategies to address it.
Collapse
Affiliation(s)
- Jack Bilby
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Katherine Moseby
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Smith KJ, Evans MJ, Gordon IJ, Pierson JC, Newport J, Manning AD. Analyzing captive breeding outcomes to inform reintroduction practice: lessons from the pookila ( Pseudomys novaehollandiae). J Mammal 2023; 104:1047-1061. [PMID: 37800101 PMCID: PMC10550247 DOI: 10.1093/jmammal/gyad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/04/2023] [Indexed: 10/07/2023] Open
Abstract
Captive breeding is often used to produce individuals for reintroduction programs in order to reestablish a species in an area where it has become locally extinct. To maximize the likelihood of establishing a self-sustaining population in the wild, an analysis of data from captive breeding programs is commonly undertaken to (1) increase the quantity of individuals and rate at which they can be released, and (2) maintain or improve the genetic and phenotypic quality of individuals. Here we demonstrate how the knowledge gained from these analyses can also be applied to decision-making during the design of subsequent reintroductions to further advance a reintroduction program toward success. We conducted an analysis of data from a captive breeding program for the threatened pookila (Pseudomys novaehollandiae, New Holland mouse) spanning 6 years. We found evidence for relationships between the reproductive output of pookila and behavioral, demographic, experiential, health, and physiological predictors. Based on a biological interpretation of these results, and with reference to a checklist of all known translocation tactics, we recommend 11 specific design elements to maximize the probability of pookila reproduction postrelease (thereby improving the likelihood of reintroduction success). These recommendations should be interpreted as hypotheses to be evaluated and refined in future reintroduction trials for the pookila. The uncertainty around the postrelease survival and reproduction of a species that is common in reintroduction practice warrants the creative use of existing data to inform adaptive management. Indeed, there is a wealth information in well-kept captive breeding records that is currently underused by reintroduction practitioners. The direct integration of knowledge derived from captive breeding (where available) with decision-making for reintroductions, as described here, will help navigate these uncertainties, which would benefit the conservation of both understudied and well-known species around the world.
Collapse
Affiliation(s)
- Kiarrah J Smith
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Maldwyn J Evans
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Iain J Gordon
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Central Queensland University, Townsville, Queensland 4810, Australia
- Land and Water, CSIRO, Townsville, Queensland 4810, Australia
- Lead, Protected Places Mission, National Environmental Science Program, Reef and Rainforest Research Centre, Cairns, Queensland 4870, Australia
| | - Jennifer C Pierson
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Australian Wildlife Conservancy, Subiaco East, Western Australia 6008, Australia
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Jenny Newport
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Adrian D Manning
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
4
|
Cowen S, Sims C, Ottewell K, Knox F, Friend T, Mills H, Garretson S, Rayner K, Gibson L. Return to 1616: Multispecies Fauna Reconstruction Requires Thinking Outside the Box. Animals (Basel) 2023; 13:2762. [PMID: 37685026 PMCID: PMC10486414 DOI: 10.3390/ani13172762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
Conservation translocations have become increasingly popular for 'rewilding' areas that have lost their native fauna. These multispecies translocations are complex and need to consider the requirements of each individual species as well as the influence of likely interactions among them. The Dirk Hartog Island National Park Ecological Restoration Project, Return to 1616, aspires to restore ecological function to Western Australia's largest island. Since 2012, pest animals have been eradicated, and conservation translocations of seven fauna species have been undertaken, with a further six planned. Here, we present a synthesis of the innovative approaches undertaken in restoring the former faunal assemblage of Dirk Hartog Island and the key learnings gathered as the project has progressed.
Collapse
Affiliation(s)
- Saul Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Colleen Sims
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia;
| | - Fiona Knox
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | - Tony Friend
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Albany, WA 6330, Australia;
| | - Harriet Mills
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, South Perth, WA 6951, Australia;
| | - Sean Garretson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
| | - Kelly Rayner
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
| | - Lesley Gibson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia;
| |
Collapse
|
5
|
Smith KJ, Evans MJ, Gordon IJ, Pierson JC, Stratford S, Manning AD. Mini Safe Havens for population recovery and reintroductions 'beyond-the-fence'. BIODIVERSITY AND CONSERVATION 2022; 32:203-225. [PMID: 36405571 PMCID: PMC9652606 DOI: 10.1007/s10531-022-02495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED In response to the ongoing decline of fauna worldwide, there has been growing interest in the rewilding of whole ecosystems outside of fenced sanctuaries or offshore islands. This interest will inevitably result in attempts to restore species where eliminating threats from predators and competitors is extremely challenging or impossible, or reintroductions of predators that will increase predation risk for extant prey (i.e., coexistence conservation). We propose 'Mini Safe Havens' (MSHs) as a potential tool for managing these threats. Mini Safe Havens are refuges that are permanently permeable to the focal species; allowing the emigration of individuals while maintaining gene flow through the boundary. Crucial to the effectiveness of the approach is the ongoing maintenance and monitoring required to preserve a low-to-zero risk of key threats within the MSH; facilitating in-situ learning and adaptation by focal species to these threats, at a rate and intensity of exposure determined by the animals themselves. We trialled the MSH approach for a pilot reintroduction of the Australian native New Holland mouse (Pseudomys novaehollandiae), in the context of a trophic rewilding project to address potential naïveté to a reintroduced native mammalian predator. We found that mice released into a MSH maintained their weight and continued to use the release site beyond 17 months (525 days) post-release. In contrast, individuals in temporary soft-release enclosures tended to lose weight and became undetectable approximately 1-month post-release. We discuss the broad applicability of MSHs for population recovery and reintroductions 'beyond-the-fence' and recommend avenues for further refinement of the approach. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10531-022-02495-6.
Collapse
Affiliation(s)
- Kiarrah J. Smith
- Fenner School of Environment and Society, The Australian National University, Acton, ACT 2601 Australia
| | - Maldwyn J. Evans
- Fenner School of Environment and Society, The Australian National University, Acton, ACT 2601 Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Iain J. Gordon
- Fenner School of Environment and Society, The Australian National University, Acton, ACT 2601 Australia
- The James Hutton Institute, Dundee, DD2 5DA UK
- Central Queensland University, Townsville, QLD 4810 Australia
- Land and Water, CSIRO, Townsville, QLD 4810 Australia
- Lead, Protected Places Mission, National Environmental Science Program, Reef and Rainforest Research Centre, Cairns, QLD 4870 Australia
| | - Jennifer C. Pierson
- Fenner School of Environment and Society, The Australian National University, Acton, ACT 2601 Australia
- Australian Wildlife Conservancy, Subiaco East, WA 6008 Australia
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Adrian D. Manning
- Fenner School of Environment and Society, The Australian National University, Acton, ACT 2601 Australia
| |
Collapse
|
6
|
Reintroduction biology and the IUCN Red List: The dominance of species of Least Concern in the peer-reviewed literature. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Stepkovitch B, Kingsford RT, Moseby KE. A comprehensive review of mammalian carnivore translocations. Mamm Rev 2022. [DOI: 10.1111/mam.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ben Stepkovitch
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences UNSW Sydney New South Wales 2052 Australia
| | - Richard T. Kingsford
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences UNSW Sydney New South Wales 2052 Australia
| | - Katherine E. Moseby
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences UNSW Sydney New South Wales 2052 Australia
| |
Collapse
|
8
|
Evans MJ, Weeks AR, Scheele BC, Gordon IJ, Neaves LE, Andrewartha TA, Brockett B, Rapley S, Smith KJ, Wilson BA, Manning AD. Coexistence conservation: Reconciling threatened species and invasive predators through adaptive ecological and evolutionary approaches. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Maldwyn J. Evans
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Andrew R. Weeks
- School of BioSciences The University of Melbourne Parkville Victoria Australia
| | - Ben C. Scheele
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Iain J. Gordon
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- The James Hutton Institute Dundee UK
- Central Queensland University Townsville Queensland Australia
- Land & water, CSIRO Townsville Queensland Australia
- Lead, Protected Places Mission, National Environmental Science Program Reef and Rainforest Research Centre Cairns Queensland Australia
| | - Linda E. Neaves
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Tim A. Andrewartha
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Brittany Brockett
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Shoshana Rapley
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Kiarrah J. Smith
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Belinda A. Wilson
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Adrian D. Manning
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
9
|
|
10
|
Azar JF, Ferlat C, Landsmann C, Hingrat Y. Timing of Release Influence Breeding Success of Translocated Captive-Bred Migrant Asian Houbara Bustard. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.815506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In conservation translocation, released animals should have comparable fitness to their wild counterparts to effectively contribute to the species demography. Captive-bred animals frequently exhibit lower fitness performances, which can often be attributed to an inadequate release strategy. Untimely release of migrant animals may interfere with key events such as their migration and breeding. In Kazakhstan and Uzbekistan, declining wild populations of Asian houbara (Chlamydotis macqueenii) are reinforced in their breeding grounds with captive-bred individuals. Using data from 6 years of monitoring, we compare eight breeding traits and the productivity of wild and captive-bred females released in two distinct seasons (autumn vs. spring) considering the effects of age and time in the season. Females released in the spring nest prior to their first migration, and females released in the autumn nest following their first migration. Our results highlight that captive-bred and wild females have similar breeding traits and productivity. Breeding probability, laying date, and egg volume varied, depending on the release season and female age. One-year-olds released in autumn have a significantly lower breeding probability compared to wild and spring-released females. However, 1-year-old females released in the spring nest later and lay smaller eggs than wild and autumn-released birds; effects which appear to be carried over with age. Age has a positive effect on breeding probability, egg volume, re-clutching probability and advancement of nesting date. These findings suggest a complex interplay of release timing with migration and breeding, resulting in short- and long-term effects on population demography, emphasizing its importance in conservation translocation.
Collapse
|
11
|
Andrewartha TA, Evans MJ, Batson WG, Manning AD, Price C, Gordon IJ, Barton PS. Outfoxing the fox: Effect of prey odor on fox behavior in a pastoral landscape. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tim A. Andrewartha
- Fenner School of Environment and Society Australian National University Acton Australian Capital Territory Australia
| | - Maldwyn J. Evans
- Fenner School of Environment and Society Australian National University Acton Australian Capital Territory Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences University of Tokyo Tokyo Japan
| | - William G. Batson
- Mulligans Flat Woodland Sanctuary ACT Parks and Conservation Service Forde Australian Capital Territory Australia
- Capital Woodlands and Wetlands Conservation Trust Forde Australian Capital Territory Australia
- NSW National Parks and Wildlife Service Blue Mountains Branch Blackheath New South Wales Australia
| | - Adrian D. Manning
- Fenner School of Environment and Society Australian National University Acton Australian Capital Territory Australia
| | - Catherine Price
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Iain J. Gordon
- Fenner School of Environment and Society Australian National University Acton Australian Capital Territory Australia
- Division of Tropical Environments & Societies James Cook University Townsville Queensland Australia
- The James Hutton Institute Cragiebuckler, Aberdeen Scotland UK
- Land & Water, CSIRO Townsville Australia
| | - Philip S. Barton
- Fenner School of Environment and Society Australian National University Acton Australian Capital Territory Australia
- School of Science, Psychology and Sport Federation University Australia, University Drive Mount Helen Victoria Australia
| |
Collapse
|