1
|
Ibañez JM, Zambrana R, Carreras P, Obregón V, Irazoqui JM, Vera PA, Lattar TE, Blanco Fernández MD, Puebla AF, Amadio AF, Torres C, López Lambertini PM. Phylodynamic of Tomato Brown Rugose Fruit Virus and Tomato Chlorosis Virus, Two Emergent Viruses in Mixed Infections in Argentina. Viruses 2025; 17:533. [PMID: 40284976 PMCID: PMC12031183 DOI: 10.3390/v17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and ToCV from infected tomato plants and wastewater samples in Argentina to explore their global evolutionary dynamics. Additionally, it compared the genetic diversity of ToBRFV in plant tissue and sewage samples. Using metagenomic analysis, the complete genome sequences of two ToBRFV isolates and two ToCV isolates from co-infected tomatoes, along with four ToBRFV isolates from sewage, were obtained. The analysis showed that ToBRFV exhibited higher genetic diversity in environmental samples than in plant samples. Phylodynamic analysis indicated that both viruses had a recent, single introduction in Argentina but predicted different times for ancestral diversification. The evolutionary analysis estimated that ToBRFV began its global diversification in June 2013 in Israel, with rapid diversification and exponential growth until 2020, after which the effective population size declined. Moreover, ToCV's global expansion was characterized by exponential growth from 1979 to 2010, with Turkey identified as the most probable location with the current data available. This study highlights how sequencing and monitoring plant viruses can enhance our understanding of their global spread and impact on agriculture.
Collapse
Affiliation(s)
- Julia M. Ibañez
- Estación Experimental Agropecuaria Bella Vista, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 27-Km 38,3, Bella Vista, Corrientes 3432, Argentina; (J.M.I.); (V.O.); (T.E.L.)
| | - Romina Zambrana
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4th floor, Ciudad Autónoma de Buenos Aires 1113, Argentina; (R.Z.); (M.D.B.F.); (C.T.)
| | - Pamela Carreras
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Av. 11 de Septiembre, X5014MGO, Córdoba 4755, Argentina;
- Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 11 de Septiembre, X5014MGO, Córdoba 4755, Argentina
| | - Verónica Obregón
- Estación Experimental Agropecuaria Bella Vista, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 27-Km 38,3, Bella Vista, Corrientes 3432, Argentina; (J.M.I.); (V.O.); (T.E.L.)
| | - José M. Irazoqui
- Instituto de Investigaciones de la Cadena Láctea (IDICAL) INTA-CONICET, Ruta 34 km 227, Rafaela, Santa Fe 2300, Argentina; (J.M.I.); (A.F.A.)
| | - Pablo A. Vera
- Unidad de Genómica y Bioinformática (UGB), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, De los Reseros y N. Repetto, Hurlingham, Ciudad Autónoma de Buenos Aires 1686, Argentina; (P.A.V.); (A.F.P.)
| | - Tatiana E. Lattar
- Estación Experimental Agropecuaria Bella Vista, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 27-Km 38,3, Bella Vista, Corrientes 3432, Argentina; (J.M.I.); (V.O.); (T.E.L.)
| | - María D. Blanco Fernández
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4th floor, Ciudad Autónoma de Buenos Aires 1113, Argentina; (R.Z.); (M.D.B.F.); (C.T.)
| | - Andrea F. Puebla
- Unidad de Genómica y Bioinformática (UGB), Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, De los Reseros y N. Repetto, Hurlingham, Ciudad Autónoma de Buenos Aires 1686, Argentina; (P.A.V.); (A.F.P.)
| | - Ariel F. Amadio
- Instituto de Investigaciones de la Cadena Láctea (IDICAL) INTA-CONICET, Ruta 34 km 227, Rafaela, Santa Fe 2300, Argentina; (J.M.I.); (A.F.A.)
| | - Carolina Torres
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4th floor, Ciudad Autónoma de Buenos Aires 1113, Argentina; (R.Z.); (M.D.B.F.); (C.T.)
| | - Paola M. López Lambertini
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Av. 11 de Septiembre, X5014MGO, Córdoba 4755, Argentina;
- Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 11 de Septiembre, X5014MGO, Córdoba 4755, Argentina
| |
Collapse
|
2
|
Di Rosa E, Durand AA, Provost C, Constant P. Epidemiology of Tomato Brown Rugose Fruit Virus in Commercial Greenhouses. PLANT DISEASE 2025; 109:633-637. [PMID: 39602582 DOI: 10.1094/pdis-09-24-1873-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The tomato brown rugose fruit virus (ToBRFV) poses a considerable threat to tomato production worldwide. Substantial experimental evidence supports the role of infected seeds as a contamination route, but the epidemiologic portrait of the virus has received less attention. This study reports the first survey of ToBRFV prevalence in commercial greenhouses. The aim was to examine the distribution of the virus in relation to greenhouse size and management practices in Québec (Canada). Plant samples collected at three production stages in 31 commercial greenhouses were subjected to ToBRFV detection and genome sequencing. The virus was detected in seven commercial greenhouses (11 positive samples out of 311 analyzed). Retrieved partial genome sequences formed a cluster with ToBRFV variants from Canada and Mexico, suggesting cross-border propagation through commercial trades. There was no link between greenhouse features and ToBRFV diagnosis, indicating that no specific profile is more susceptible to infection than others.
Collapse
Affiliation(s)
- Emilien Di Rosa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
| | - Audrey-Anne Durand
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
| | - Caroline Provost
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
- Centre de recherche agroalimentaire de Mirabel, Mirabel, QC J7N 2X8, Canada
| | - Philippe Constant
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC H7V 1B7, Canada
| |
Collapse
|
3
|
Cubero J, Zarco-Tejada PJ, Cuesta-Morrondo S, Palacio-Bielsa A, Navas-Cortés JA, Sabuquillo P, Poblete T, Landa BB, Garita-Cambronero J. New Approaches to Plant Pathogen Detection and Disease Diagnosis. PHYTOPATHOLOGY 2024; 114:1989-2006. [PMID: 39264350 DOI: 10.1094/phyto-10-23-0366-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.
Collapse
Affiliation(s)
- Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pablo J Zarco-Tejada
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sara Cuesta-Morrondo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ana Palacio-Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón-Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan A Navas-Cortés
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Sabuquillo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Tomás Poblete
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Blanca B Landa
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | |
Collapse
|
4
|
Nash D, Ellmen I, Knapp JJ, Menon R, Overton AK, Cheng J, Lynch MDJ, Nissimov JI, Charles TC. A Novel Tiled Amplicon Sequencing Assay Targeting the Tomato Brown Rugose Fruit Virus (ToBRFV) Genome Reveals Widespread Distribution in Municipal Wastewater Treatment Systems in the Province of Ontario, Canada. Viruses 2024; 16:460. [PMID: 38543825 PMCID: PMC10974707 DOI: 10.3390/v16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato Brown Rugose Fruit Virus (ToBRFV) is a plant pathogen that infects important Solanaceae crop species and can dramatically reduce tomato crop yields. The ToBRFV has rapidly spread around the globe due to its ability to escape detection by antiviral host genes which confer resistance to other tobamoviruses in tomato plants. The development of robust and reproducible methods for detecting viruses in the environment aids in the tracking and reduction of pathogen transmission. We detected ToBRFV in municipal wastewater influent (WWI) samples, likely due to its presence in human waste, demonstrating a widespread distribution of ToBRFV in WWI throughout Ontario, Canada. To aid in global ToBRFV surveillance efforts, we developed a tiled amplicon approach to sequence and track the evolution of ToBRFV genomes in municipal WWI. Our assay recovers 95.7% of the 6393 bp ToBRFV RefSeq genome, omitting the terminal 5' and 3' ends. We demonstrate that our sequencing assay is a robust, sensitive, and highly specific method for recovering ToBRFV genomes. Our ToBRFV assay was developed using existing ARTIC Network resources, including primer design, sequencing library prep, and read analysis. Additionally, we adapted our lineage abundance estimation tool, Alcov, to estimate the abundance of ToBRFV clades in samples.
Collapse
Affiliation(s)
- Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Isaac Ellmen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jennifer J. Knapp
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Ria Menon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Alyssa K. Overton
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Michael D. J. Lynch
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jozef I. Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| |
Collapse
|
5
|
Salem NM, Jewehan A, Aranda MA, Fox A. Tomato Brown Rugose Fruit Virus Pandemic. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:137-164. [PMID: 37268006 DOI: 10.1146/annurev-phyto-021622-120703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus. It was first reported in 2015 in Jordan in greenhouse tomatoes and now threatens tomato and pepper crops around the world. ToBRFV is a stable and highly infectious virus that is easily transmitted by mechanical means and via seeds, which enables it to spread locally and over long distances. The ability of ToBRFV to infect tomato plants harboring the commonly deployed Tm resistance genes, as well as pepper plants harboring the L resistance alleles under certain conditions, limits the ability to prevent damage from the virus. The fruit production and quality of ToBRFV-infected tomato and pepper plants can be drastically affected, thus significantly impacting their market value. Herein, we review the current information and discuss the latest areas of research on this virus, which include its discovery and distribution, epidemiology, detection, and prevention and control measures, that could help mitigate the ToBRFV disease pandemic.
Collapse
Affiliation(s)
- Nida' M Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan;
| | - Ahmad Jewehan
- Applied Plant Genomics Group, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Adrian Fox
- Fera Science, Sand Hutton, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Jeger MJ, Fielder H, Beale T, Szyniszewska AM, Parnell S, Cunniffe NJ. What Can Be Learned by a Synoptic Review of Plant Disease Epidemics and Outbreaks Published in 2021? PHYTOPATHOLOGY 2023; 113:1141-1158. [PMID: 36935375 DOI: 10.1094/phyto-02-23-0069-ia] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A synoptic review of plant disease epidemics and outbreaks was made using two complementary approaches. The first approach involved reviewing scientific literature published in 2021, in which quantitative data related to new plant disease epidemics or outbreaks were obtained via surveys or similar methodologies. The second approach involved retrieving new records added in 2021 to the CABI Distribution Database, which contains over a million global geographic records of organisms from over 50,000 species. The literature review retrieved 186 articles, describing studies in 62 categories (pathogen species/species complexes) across more than 40 host species on six continents. Pathogen species with more than five articles were Bursaphelenchus xylophilus, 'Candidatus Liberibacter asiaticus', cassava mosaic viruses, citrus tristeza virus, Erwinia amylovora, Fusarium spp. complexes, F. oxysporum f. sp. cubense, Magnaporthe oryzae, maize lethal necrosis co-infecting viruses, Meloidogyne spp. complexes, Pseudomonas syringae pvs., Puccinia striiformis f. sp. tritici, Xylella fastidiosa, and Zymoseptoria tritici. Automated searches of the CABI Distribution Database identified 617 distribution records new in 2021 of 283 plant pathogens. A further manual review of these records confirmed 15 pathogens reported in new locations: apple hammerhead viroid, apple rubbery wood viruses, Aphelenchoides besseyi, Biscogniauxia mediterranea, 'Ca. Liberibacter asiaticus', citrus tristeza virus, Colletotrichum siamense, cucurbit chlorotic yellows virus, Erwinia rhapontici, Erysiphe corylacearum, F. oxysporum f. sp. cubense Tropical race 4, Globodera rostochiensis, Nothophoma quercina, potato spindle tuber viroid, and tomato brown rugose fruit virus. Of these, four pathogens had at least 25% of all records reported in 2021. We assessed two of these pathogens-tomato brown rugose fruit virus and cucurbit chlorotic yellows virus-to be actively emerging in/spreading to new locations. Although three important pathogens-'Ca. Liberibacter asiaticus', citrus tristeza virus, and F. oxysporum f. sp. cubense-were represented in the results of both our literature review and our interrogation of the CABI Distribution Database, in general, our dual approaches revealed distinct sets of plant disease outbreaks and new records, with little overlap. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Ascot, U.K
| | | | | | | | - Stephen Parnell
- Warwick Crop Centre, University of Warwick, Wellesbourne Campus, Warwick, U.K
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, U.K
| |
Collapse
|
7
|
Alcalá Briseño RI, Batuman O, Brawner J, Cuellar WJ, Delaquis E, Etherton BA, French-Monar RD, Kreuze JF, Navarrete I, Ogero K, Plex Sulá AI, Yilmaz S, Garrett KA. Translating virome analyses to support biosecurity, on-farm management, and crop breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1056603. [PMID: 36998684 PMCID: PMC10043385 DOI: 10.3389/fpls.2023.1056603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally.
Collapse
Affiliation(s)
- Ricardo I. Alcalá Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Plant Pathology Department, Oregon State University, Corvallis, OR, United States
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Jeremy Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Wilmer J. Cuellar
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Erik Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Laos
| | - Berea A. Etherton
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | | | - Jan F. Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Israel Navarrete
- Crop and System Sciences Division, International Potato Center (CIP), Quito, Ecuador
| | - Kwame Ogero
- Crop and System Sciences Division, International Potato Center (CIP), Mwanza, Tanzania
| | - Aaron I. Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Salih Yilmaz
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Karen A. Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Rothman JA, Whiteson KL. Sequencing and Variant Detection of Eight Abundant Plant-Infecting Tobamoviruses across Southern California Wastewater. Microbiol Spectr 2022; 10:e0305022. [PMID: 36374107 PMCID: PMC9769696 DOI: 10.1128/spectrum.03050-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tobamoviruses are agriculturally relevant viruses that cause crop losses and have infected plants in many regions of the world. These viruses are frequently found in municipal wastewater, likely coming from human diet and industrial waste across wastewater catchment areas. As part of a large wastewater-based epidemiology study across Southern California, we analyzed RNA sequence data from 275 influent wastewater samples obtained from eight wastewater treatment plants with a catchment area of approximately 16 million people from July 2020 to August 2021. We assembled 1,083 high-quality genomes, enumerated viral sequencing reads, and detected thousands of single nucleotide variants from eight common tobamoviruses: bell pepper mottle virus, cucumber green mottle mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, tomato brown rugose fruit virus, tomato mosaic virus, tomato mottle mosaic virus, and tropical soda apple mosaic virus. We show that single nucleotide variants had amino acid-altering consequences along with synonymous mutations, which represents potential evolution with functional consequences in genomes of these viruses. Our study shows the importance of wastewater sequencing to monitor the genomic diversity of these plant-infecting viruses, and we suggest that our data could be used to continue tracking the genomic variability of such pathogens. IMPORTANCE Diseases caused by viruses in the genus Tobamovirus cause crop losses around the world. As with other viruses, mutation occurring in the virus's genomes can have functional consequences and may alter viral infectivity. Many of these plant-infecting viruses have been found in wastewater, likely coming from human consumption of infected plants and produce. By sequencing RNA extracted from influent wastewater obtained from eight wastewater treatment plants in Southern California, we assembled high-quality viral genomes and detected thousands of single nucleotide variants from eight tobamoviruses. Our study shows that Tobamovirus genomes vary at many positions, which may have important consequences when designing assays for the detection of these viruses by agricultural or environmental scientists.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
9
|
Çelik A, Coşkan S, Morca AF, Santosa AI, Koolivand D. Insight into Population Structure and Evolutionary Analysis of the Emerging Tomato Brown Rugose Fruit Virus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233279. [PMID: 36501319 PMCID: PMC9738901 DOI: 10.3390/plants11233279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
A total of 112 symptomatic tomatoes (Solanum lycopersicum L.) and 83 symptomatic pepper (Capsicum spp.) samples were collected in Ankara, Eskişehir, Bartın, and Zonguldak provinces of Turkey during 2020-2021. Six tomatoes and one pepper sample (3.6%) tested positive for tomato brown rugose fruit virus (ToBRFV, genus Tobamovirus) infection by DAS-ELISA and RT-PCR. ToBRFV-positive tomato and pepper plants were removed from greenhouses as soon as possible, and the greenhouses and tools were disinfected completely. Phylogenetic analysis on the complete CP sequences suggested the clustering of 178 GenBank isolates and 7 novel isolates into three groups. A study using DnaSP software showed very low genetic variation among current global ToBRFV isolates. All four ORFs of the virus genome were under strong negative evolutionary constraints, with a ω value range of 0.0869-0.2066. However, three neutrality tests indicated that most populations of the newly identified ToBRFV are currently expanding by assigning statistically significant negative values to them. The very low FST values (0.25 or less) obtained by all comparisons of the isolates from Europe, the Middle East, China, and America concluded that there is no clear genetic separation among currently known isolates from different geographic origins. The divergence time of ToBRFV was estimated to be in the middle of the course of the evolution of 11 tested tobamoviruses. The time to the most recent common ancestors (TMRCAs) of ToBRFV were calculated to be 0.8 and 1.87 with the genetically closest members of Tobamovirus. The results of this study could improve our understanding on the population structure of the emerging ToBRFV.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Turkey
| | - Sevgi Coşkan
- Directorate of Central Plant Protection Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Turkey
| | - Ali Ferhan Morca
- Directorate of Central Plant Protection Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Turkey
| | - Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1, Sleman, Yogyakarta 55281, Indonesia
| | - Davoud Koolivand
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan 45371, Iran
| |
Collapse
|
10
|
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. MOLECULAR PLANT PATHOLOGY 2022; 23:1262-1277. [PMID: 35598295 PMCID: PMC9366064 DOI: 10.1111/mpp.13229] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.
Collapse
Affiliation(s)
- Shaokang Zhang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Jonathan S. Griffiths
- London Research and Development CentreAgriculture and Agri‐Food CanadaVinelandOntarioCanada
| | - Geneviève Marchand
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
11
|
Isolation and molecular characterization of a tomato brown rugose fruit virus mutant breaking the tobamovirus resistance found in wild Solanum species. Arch Virol 2022; 167:1559-1563. [PMID: 35507202 PMCID: PMC9160144 DOI: 10.1007/s00705-022-05438-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
A new tobamovirus named tomato brown rugose fruit virus (ToBRFV) overcomes the effect of the Tm-1, Tm-2, and Tm-22 resistance genes introgressed from wild Solanum species into cultivated tomato (Solanum lycopersicum). Here, we report the isolation and molecular characterization of a spontaneous mutant of ToBRFV that breaks resistance in an unknown genetic background, demonstrated recently in Solanum habrochaites and Solanum peruvianum. The wild isolate ToBRFV-Tom2-Jo and the mutant ToBRFV-Tom2M-Jo were fully sequenced and compared to each other and to other ToBRFV sequences available in the NCBI GenBank database. Sequence analysis revealed five nucleotide substitutions in the ToBRFV-Tom2M-Jo genome compared to ToBRFV-Tom2-Jo. Two substitutions were located in the movement protein (MP) gene and resulted in amino acid changes in the 30-kDa MP (Phe22 → Asn and Tyr82 → Lys). These substitutions were not present in any of the previously described ToBRFV isolates. No amino acid changes were found in the 126-kDa and 183-kDa replicase proteins or the 17.5-kDa coat protein. Our data strongly suggest that breaking the newly discovered resistance in wild tomatoes is associated with one or two mutations on the MP gene of ToBRFV.
Collapse
|
12
|
Montine P, Kelly TR, Stoute S, da Silva AP, Crossley B, Corsiglia C, Shivaprasad HL, Gallardo RA. Infectious Bronchitis Virus Surveillance in Broilers in California (2012–20). Avian Dis 2021; 65:584-591. [DOI: 10.1637/aviandiseases-d-21-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022]
Affiliation(s)
- P. Montine
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - T. R. Kelly
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California, Davis, CA 95616
| | - S. Stoute
- California Animal Health and Food Safety Lab, Turlock branch, University of California, Davis, 1550 N. Soderquist Road, Turlock, CA 95380
| | - A. P. da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - B. Crossley
- California Animal Health and Food Safety Lab, Davis branch, University of California, Davis, 620 Health Science Drive, Davis, CA 95616
| | - C. Corsiglia
- Foster Farms, 1000 Davis Street, Livingston, CA 95334
| | - H. L. Shivaprasad
- California Animal Health and Food Safety Lab, Tulare branch, University of California, Davis, 18760 Road 112, Tulare, CA 93274
| | - R. A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| |
Collapse
|
13
|
Yan Z, Ma H, Wang L, Tettey C, Zhao M, Geng C, Tian Y, Li X. Identification of genetic determinants of tomato brown rugose fruit virus that enable infection of plants harbouring the Tm-2 2 resistance gene. MOLECULAR PLANT PATHOLOGY 2021; 22:1347-1357. [PMID: 34390124 PMCID: PMC8518564 DOI: 10.1111/mpp.13115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 05/19/2023]
Abstract
Tomato cultivars containing the Tm-22 resistance gene have been widely known to resist tobacco mosaic virus (TMV) and tomato mosaic virus. Tomato brown rugose fruit virus (ToBRFV), a new emerging tobamovirus, can infect tomato plants carrying the Tm-22 gene. However, the virulence determinant of ToBRFV that overcomes the resistance conferred by the Tm-22 gene remains unclear. In this study, we substituted the movement protein (MP) encoding sequences between ToBRFV and TMV infectious clones and conducted infectivity assays. The results showed that MP was the virulence determinant for ToBRFV to infect Tm-22 transgenic Nicotiana benthamiana plants and Tm-22 -carrying tomato plants. A TMV MP chimera with amino acid residues 60-186 of ToBRFV MP failed to induce hypersensitive cell death in the leaves of Tm-22 transgenic N. benthamiana plants. Chimeric TMV containing residues 60-186 of ToBRFV MP could, but chimeric ToBRFV containing 61-187 residues of TMV MP failed to infect Tm-22 transgenic N. benthamiana plants, indicating that 60-186 residues of MP were important for ToBRFV to overcome Tm-22 gene-mediated resistance. Further analysis showed that six amino acid residues, H67 , N125 , K129 , A134 , I147 , and I168 of ToBRFV MP, were critical in overcoming Tm-22 -mediated resistance in transgenic N. benthamiana plants and tomato plants. These results increase our understanding of the mechanism by which ToBRFV overcomes Tm-22 -mediated resistance.
Collapse
Affiliation(s)
- Zhi‐Yong Yan
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
| | - Hua‐Yu Ma
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
| | - Lu Wang
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
| | - Carlos Tettey
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
| | - Mei‐Sheng Zhao
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
| | - Chao Geng
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyShandong Agricultural UniversityTai’anChina
| | - Yan‐Ping Tian
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyShandong Agricultural UniversityTai’anChina
| | - Xiang‐Dong Li
- Laboratory of Plant VirologyCollege of Plant ProtectionShandong Agricultural UniversityTai’anChina
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyShandong Agricultural UniversityTai’anChina
| |
Collapse
|
14
|
Chanda B, Gilliard A, Jaiswal N, Ling KS. Comparative Analysis of Host Range, Ability to Infect Tomato Cultivars with Tm-22 Gene, and Real-Time Reverse Transcription PCR Detection of Tomato Brown Rugose Fruit Virus. PLANT DISEASE 2021; 105:3643-3652. [PMID: 34058839 DOI: 10.1094/pdis-05-20-1070-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tomato (Solanum lycopersicum L.) is one of the most important vegetables in the world. However, tomato is also susceptible to many viral diseases. Several tobamoviruses, including tomato mosaic virus (ToMV), tomato mottle mosaic virus (ToMMV), and tomato brown rugose fruit virus (ToBRFV), are highly contagious pathogens that could result in significant economic losses if not controlled effectively. Tobamoviruses have been managed relatively well with broad adaptation of tomato cultivars with resistance genes. However, emergence of ToBRFV was shown to break down resistance conferred by the common resistance genes, resulting in serious outbreaks in many countries in Asia, Europe, and North America. The objective of this study was to conduct a comparative analysis of biological properties, including host range and disease resistance of ToMV, ToMMV, and ToBRFV. Results showed that despite many similarities in the host range, there were some unique host plant responses for each of the three viruses. In a comparative evaluation of disease resistance using the same tomato cultivars with or without Tm-22 gene, there was a striking difference in responses from tomato plants with Tm-22 gene inoculated with ToBRFV, ToMV, or ToMMV. Whereas these test plants were resistant to ToMV or ToMMV infection, all test plants were susceptible to ToBRFV. Further, for ToBRFV detection, a sensitive and reliable multiplex real-time reverse transcription (RT)-PCR assay using TaqMan probe with an internal 18S rRNA control was also developed. With simple modifications to RNA extraction and seed soaking, real-time RT-PCR could consistently detect the virus in single infested seed in varied levels of contamination, suggesting its usefulness for seed health assay.
Collapse
Affiliation(s)
- Bidisha Chanda
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| | - Andrea Gilliard
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| | - Namrata Jaiswal
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| | - Kai-Shu Ling
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| |
Collapse
|
15
|
Bernabé-Orts JM, Torre C, Méndez-López E, Hernando Y, Aranda MA. New Resources for the Specific and Sensitive Detection of the Emerging Tomato Brown Rugose Fruit Virus. Viruses 2021; 13:v13091680. [PMID: 34578261 PMCID: PMC8473139 DOI: 10.3390/v13091680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Plant viruses can evolve towards new pathogenic entities that may eventually cause outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing significant losses in tomato crops. While new resistances are deployed, the only means of control is the implementation of effective prevention and eradication strategies. For this purpose, in this work, we have designed, assessed, and compared an array of tests for the specific and sensitive detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR (RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed, and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV, and one set that works as an internal control. Finally, we compared all of these methods by employing a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Covadonga Torre
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain;
| | - Yolanda Hernando
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain;
- Correspondence:
| |
Collapse
|
16
|
Bernabé-Orts JM, Torre C, Méndez-López E, Hernando Y, Aranda MA. New Resources for the Specific and Sensitive Detection of the Emerging Tomato Brown Rugose Fruit Virus. Viruses 2021; 13:v13091680. [PMID: 34578261 DOI: 10.1094/phytofr-08-21-0053-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 05/24/2023] Open
Abstract
Plant viruses can evolve towards new pathogenic entities that may eventually cause outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing significant losses in tomato crops. While new resistances are deployed, the only means of control is the implementation of effective prevention and eradication strategies. For this purpose, in this work, we have designed, assessed, and compared an array of tests for the specific and sensitive detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR (RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed, and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV, and one set that works as an internal control. Finally, we compared all of these methods by employing a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Covadonga Torre
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
17
|
Alon DM, Hak H, Bornstein M, Pines G, Spiegelman Z. Differential Detection of the Tobamoviruses Tomato Mosaic Virus (ToMV) and Tomato Brown Rugose Fruit Virus (ToBRFV) Using CRISPR-Cas12a. PLANTS (BASEL, SWITZERLAND) 2021; 10:1256. [PMID: 34205558 PMCID: PMC8234260 DOI: 10.3390/plants10061256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato industry. Specific CRISPR RNAs (crRNAs) were designed to detect either ToBRFV or the closely related tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15-30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method can enable the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of tobamoviruses. A future combination of this approach with isothermal amplification could provide a platform for efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens.
Collapse
Affiliation(s)
- Dan Mark Alon
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Menachem Bornstein
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Gur Pines
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Ziv Spiegelman
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
18
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|