1
|
Arpin KE, Schmidt DA, Sjodin BMF, Einfeldt AL, Galbreath K, Russello MA. Evaluating genotyping-in-thousands by sequencing as a genetic monitoring tool for a climate sentinel mammal using non-invasive and archival samples. Ecol Evol 2024; 14:e10934. [PMID: 38333095 PMCID: PMC10850814 DOI: 10.1002/ece3.10934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Genetic tools for wildlife monitoring can provide valuable information on spatiotemporal population trends and connectivity, particularly in systems experiencing rapid environmental change. Multiplexed targeted amplicon sequencing techniques, such as genotyping-in-thousands by sequencing (GT-seq), can provide cost-effective approaches for collecting genetic data from low-quality and quantity DNA samples, making them potentially useful for long-term wildlife monitoring using non-invasive and archival samples. Here, we developed a GT-seq panel as a potential monitoring tool for the American pika (Ochotona princeps) and evaluated its performance when applied to traditional, non-invasive, and archival samples, respectively. Specifically, we optimized a GT-seq panel (307 single nucleotide polymorphisms (SNPs)) that included neutral, sex-associated, and putatively adaptive SNPs using contemporary tissue samples (n = 77) from the Northern Rocky Mountains lineage of American pikas. The panel demonstrated high genotyping success (94.7%), low genotyping error (0.001%), and excellent performance identifying individuals, sex, relatedness, and population structure. We subsequently applied the GT-seq panel to archival tissue (n = 17) and contemporary fecal pellet samples (n = 129) collected within the Canadian Rocky Mountains to evaluate its effectiveness. Although the panel demonstrated high efficacy with archival tissue samples (90.5% genotyping success, 0.0% genotyping error), this was not the case for the fecal pellet samples (79.7% genotyping success, 28.4% genotyping error) likely due to the exceptionally low quality/quantity of recovered DNA using the approaches implemented. Overall, our study reinforced GT-seq as an effective tool using contemporary and archival tissue samples, providing future opportunities for temporal applications using historical specimens. Our results further highlight the need for additional optimization of sample and genetic data collection techniques prior to broader-scale implementation of a non-invasive genetic monitoring tool for American pikas.
Collapse
Affiliation(s)
- Kate E. Arpin
- Department of BiologyThe University of British ColumbiaKelownaBritish ColumbiaCanada
| | - Danielle A. Schmidt
- Department of BiologyThe University of British ColumbiaKelownaBritish ColumbiaCanada
| | - Bryson M. F. Sjodin
- Department of BiologyThe University of British ColumbiaKelownaBritish ColumbiaCanada
| | | | - Kurt Galbreath
- Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
| | - Michael A. Russello
- Department of BiologyThe University of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
2
|
Oh KP, Van de Weyer N, Ruscoe WA, Henry S, Brown PR. From chip to SNP: Rapid development and evaluation of a targeted capture genotyping-by-sequencing approach to support research and management of a plaguing rodent. PLoS One 2023; 18:e0288701. [PMID: 37590245 PMCID: PMC10434965 DOI: 10.1371/journal.pone.0288701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
The management of invasive species has been greatly enhanced by population genetic analyses of multilocus single-nucleotide polymorphism (SNP) datasets that provide critical information regarding pest population structure, invasion pathways, and reproductive biology. For many applications there is a need for protocols that offer rapid, robust and efficient genotyping on the order of hundreds to thousands of SNPs, that can be tailored to specific study populations and that are scalable for long-term monitoring schemes. Despite its status as a model laboratory species, there are few existing resources for studying wild populations of house mice (Mus musculus spp.) that strike this balance between data density and laboratory efficiency. Here we evaluate the utility of a custom targeted capture genotyping-by-sequencing approach to support research on plaguing house mouse populations in Australia. This approach utilizes 3,651 hybridization capture probes targeting genome-wide SNPs identified from a sample of mice collected in grain-producing regions of southeastern Australia genotyped using a commercially available microarray platform. To assess performance of the custom panel, we genotyped wild caught mice (N = 320) from two adjoining farms and demonstrate the ability to correctly assign individuals to source populations with high confidence (mean >95%), as well as robust kinship inference within sites. We discuss these results in the context of proposed applications for future genetic monitoring of house mice in Australia.
Collapse
Affiliation(s)
- Kevin P. Oh
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | - Nikki Van de Weyer
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | | | - Steve Henry
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | - Peter R. Brown
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
3
|
Burgess BT, Irvine RL, Russello MA. A genotyping-in-thousands by sequencing panel to inform invasive deer management using noninvasive fecal and hair samples. Ecol Evol 2022; 12:e8993. [PMID: 35784067 PMCID: PMC9185734 DOI: 10.1002/ece3.8993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Studies in ecology, evolution, and conservation often rely on noninvasive samples, making it challenging to generate large amounts of high-quality genetic data for many elusive and at-risk species. We developed and optimized a Genotyping-in-Thousands by sequencing (GT-seq) panel using noninvasive samples to inform the management of invasive Sitka black-tailed deer (Odocoileus hemionus sitkensis) in Haida Gwaii (Canada). We validated our panel using paired high-quality tissue and noninvasive fecal and hair samples to simultaneously distinguish individuals, identify sex, and reconstruct kinship among deer sampled across the archipelago, then provided a proof-of-concept application using field-collected feces on SGang Gwaay, an island of high ecological and cultural value. Genotyping success across 244 loci was high (90.3%) and comparable to that of high-quality tissue samples genotyped using restriction-site associated DNA sequencing (92.4%), while genotyping discordance between paired high-quality tissue and noninvasive samples was low (0.50%). The panel will be used to inform future invasive species operations in Haida Gwaii by providing individual and population information to inform management. More broadly, our GT-seq workflow that includes quality control analyses for targeted SNP selection and a modified protocol may be of wider utility for other studies and systems where noninvasive genetic sampling is employed.
Collapse
Affiliation(s)
- Brock T. Burgess
- Department of BiologyThe University of British ColumbiaKelownaCanada
| | - Robyn L. Irvine
- Ecosystem Conservation TeamProtected Areas Establishment and Conservation DirectorateParks Canada AgencyGatineauCanada
| | | |
Collapse
|
4
|
Hayward KM, Clemente-Carvalho RBG, Jensen EL, de Groot PVC, Branigan M, Dyck M, Tschritter C, Sun Z, Lougheed SC. Genotyping-in-thousands by sequencing (GT-seq) of non-invasive fecal and degraded samples: a new panel to enable ongoing monitoring of Canadian polar bear populations. Mol Ecol Resour 2022; 22:1906-1918. [PMID: 35007402 PMCID: PMC9305793 DOI: 10.1111/1755-0998.13583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
Genetic monitoring using noninvasive samples provides a complement or alternative to traditional population monitoring methods. However, next‐generation sequencing approaches to monitoring typically require high quality DNA and the use of noninvasive samples (e.g., scat) is often challenged by poor DNA quality and contamination by nontarget species. One promising solution is a highly multiplexed sequencing approach called genotyping‐in‐thousands by sequencing (GT‐seq), which can enable cost‐efficient genomics‐based monitoring for populations based on noninvasively collected samples. Here, we develop and validate a GT‐seq panel of 324 single nucleotide polymorphisms (SNPs) optimized for genotyping of polar bears based on DNA from noninvasively collected faecal samples. We demonstrate (1) successful GT‐seq genotyping of DNA from a range of sample sources, including successful genotyping (>50% loci) of 62.9% of noninvasively collected faecal samples determined to contain polar bear DNA; and (2) that we can reliably differentiate individuals, ascertain sex, assess relatedness, and resolve population structure of Canadian polar bear subpopulations based on a GT‐seq panel of 324 SNPs. Our GT‐seq data reveal spatial‐genetic patterns similar to previous polar bear studies but at lesser cost per sample and through use of noninvasively collected samples, indicating the potential of this approach for population monitoring. This GT‐seq panel provides the foundation for a noninvasive toolkit for polar bear monitoring and can contribute to community‐based programmes – a framework which may serve as a model for wildlife conservation and management for species worldwide.
Collapse
Affiliation(s)
- Kristen M Hayward
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
| | | | - Marsha Branigan
- Department of Environment and Natural Resources, Government of the Northwest Territories, Inuvik, Northwest Territories, Canada
| | - Markus Dyck
- Department of Environment, Government of Nunavut, Igloolik, Nunavut, Canada
| | | | - Zhengxin Sun
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
5
|
Chang SL, Ward HGM, Russello MA. Genotyping-in-Thousands by sequencing panel development and application to inform kokanee salmon (Oncorhynchus nerka) fisheries management at multiple scales. PLoS One 2021; 16:e0261966. [PMID: 34941943 PMCID: PMC8699693 DOI: 10.1371/journal.pone.0261966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to differentiate life history variants is vital for estimating fisheries management parameters, yet traditional survey methods can be inaccurate in mixed-stock fisheries. Such is the case for kokanee, the freshwater resident form of sockeye salmon (Oncorhynchus nerka), which exhibits various reproductive ecotypes (stream-, shore-, deep-spawning) that co-occur with each other and/or anadromous O. nerka in some systems across their pan-Pacific distribution. Here, we developed a multi-purpose Genotyping-in-Thousands by sequencing (GT-seq) panel of 288 targeted single nucleotide polymorphisms (SNPs) to enable accurate kokanee stock identification by geographic basin, migratory form, and reproductive ecotype across British Columbia, Canada. The GT-seq panel exhibited high self-assignment accuracy (93.3%) and perfect assignment of individuals not included in the baseline to their geographic basin, migratory form, and reproductive ecotype of origin. The GT-seq panel was subsequently applied to Wood Lake, a valuable mixed-stock fishery, revealing high concordance (>98%) with previous assignments to ecotype using microsatellites and TaqMan® SNP genotyping assays, while improving resolution, extending a long-term time-series, and demonstrating the scalability of this approach for this system and others.
Collapse
Affiliation(s)
- Sarah L. Chang
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Hillary G. M. Ward
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Penticton, BC, Canada
| | - Michael A. Russello
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- * E-mail:
| |
Collapse
|
6
|
Burgess BT, Irvine RL, Howald GR, Russello MA. The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive species are major contributors to global biodiversity decline. Invasive mammalian species (IMS), in particular, have profound negative effects in island systems that contain disproportionally high levels of species richness and endemism. The eradication and control of IMS have become important conservation tools for managing species invasions on islands, yet these management operations are often subject to failure due to knowledge gaps surrounding species- and system-specific characteristics, including invasion pathways and contemporary migration patterns. Here, we synthesize the literature on ways in which genetic and genomic tools have effectively informed IMS management on islands, specifically associated with the development and modification of biosecurity protocols, and the design and implementation of eradication and control programs. In spite of their demonstrated utility, we then explore the challenges that are preventing genetics and genomics from being implemented more frequently in IMS management operations from both academic and non-academic perspectives, and suggest possible solutions for breaking down these barriers. Finally, we discuss the potential application of genome editing to the future management of invasive species on islands, including the current state of the field and why islands may be effective targets for this emerging technology.
Collapse
|
7
|
Jo J, Kim Y, Kim GW, Kwon JK, Kang BC. Development of a Panel of Genotyping-in-Thousands by Sequencing in Capsicum. FRONTIERS IN PLANT SCIENCE 2021; 12:769473. [PMID: 34764974 PMCID: PMC8576353 DOI: 10.3389/fpls.2021.769473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
Genotyping by sequencing (GBS) enables genotyping of multiple loci at low cost. However, the single nucleotide polymorphisms (SNPs) revealed by GBS tend to be randomly distributed between individuals, limiting their direct comparisons without applying the various filter options to obtain a comparable dataset of SNPs. Here, we developed a panel of a multiplex targeted sequencing method, genotyping-in-thousands by sequencing (GT-seq), to genotype SNPs in Capsicum spp. Previously developed Fluidigm® SNP markers were converted to GT-seq markers and combined with new GT-seq markers developed using SNP information obtained through GBS. We then optimized multiplex PCR conditions: we obtained the highest genotyping rate when the first PCR consisted of 25 cycles. In addition, we determined that 101 primer pairs performed best when amplifying target sequences of 79 bp. We minimized interference of multiplex PCR by primer dimer formation using the PrimerPooler program. Using our GT-seq pipeline on Illumina Miseq and Nextseq platforms, we genotyped up to 1,500 (Miseq) and 1,300 (Nextseq) samples for the optimum panel size of 100 loci. To allow the genotyping of Capsicum species, we designed 332 informative GT-seq markers from Fluidigm SNP markers and GBS-derived SNPs. This study illustrates the first application of GT-seq in crop plants. The GT-seq marker set developed here will be a useful tool for molecular breeding of peppers in the future.
Collapse
|