1
|
Costa-Júnior DA, Souza Valente TN, Belisário AR, Carvalho GQ, Madeira M, Velloso-Rodrigues C. Association of ZBTB38 gene polymorphism (rs724016) with height and fetal hemoglobin in individuals with sickle cell anemia. Mol Genet Metab Rep 2024; 39:101086. [PMID: 38800625 PMCID: PMC11127270 DOI: 10.1016/j.ymgmr.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives Our study evaluated the association of the polymorphism rs724016 in the ZBTB38 gene, previously associated with height in other populations, with predictors of height, clinical outcomes, and laboratory parameters in sickle cell anemia (SCA). Methods Cross-sectional study with individuals with SCA and aged between 3 and 20 years. Clinical, laboratory, molecular, and bone age (BA) data were evaluated. Levels of IGF-1 and IGFBP-3 were adjusted for BA, target height (TH) was calculated as the mean parental height standard deviation score (SDS), and predicted adult height (PAH) SDS was calculated using BA. Results We evaluated 80 individuals with SCA. The homozygous genotype of the G allele of rs724016 was associated with a lower height SDS (p < 0.001) and, in a additive genetic model, was negatively associated with HbF levels (p = 0.016). Lower adjusted IGF-1 levels were associated with co-inheritance of alpha-thalassemia and with the absence of HU therapy. Elevated HbF levels were associated with a lower deficit in adjusted growth potential (TH minus PAH). Conclusion Our analysis shows that SNP rs724016 in the ZBTB38 is associated with shorter height and lower HbF levels, an important modifier of SCA.
Collapse
Affiliation(s)
- Domício Antônio Costa-Júnior
- Department of Medicine, Federal University of Juiz de Fora - Governador Valadares Campus (UFJF-GV), Minas Gerais (MG), Brazil
| | | | | | | | - Miguel Madeira
- Division of Endocrinology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
2
|
Marchal C, Defossez PA, Miotto B. Context-dependent CpG methylation directs cell-specific binding of transcription factor ZBTB38. Epigenetics 2022; 17:2122-2143. [PMID: 36000449 DOI: 10.1080/15592294.2022.2111135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DNA methylation on CpGs regulates transcription in mammals, both by decreasing the binding of methylation-repelled factors and by increasing the binding of methylation-attracted factors. Among the latter, zinc finger proteins have the potential to bind methylated CpGs in a sequence-specific context. The protein ZBTB38 is unique in that it has two independent sets of zinc fingers, which recognize two different methylated consensus sequences in vitro. Here, we identify the binding sites of ZBTB38 in a human cell line, and show that they contain the two methylated consensus sequences identified in vitro. In addition, we show that the distribution of ZBTB38 sites is highly unusual: while 10% of the ZBTB38 sites are also bound by CTCF, the other 90% of sites reside in closed chromatin and are not bound by any of the other factors mapped in our model cell line. Finally, a third of ZBTB38 sites are found upstream of long and active CpG islands. Our work therefore validates ZBTB38 as a methyl-DNA binder in vivo and identifies its unique distribution in the genome.
Collapse
Affiliation(s)
- Claire Marchal
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
3
|
Nishio M, Matsuura T, Hibi S, Ohta S, Oka C, Sasai N, Ishida Y, Matsuda E. Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression. Cell Prolif 2022; 55:e13215. [PMID: 35297517 PMCID: PMC9055898 DOI: 10.1111/cpr.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Mammalian DNA methyltransferases are essential to re-establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl-CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)-a zinc finger type of MBP-is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear. MATERIALS AND METHODS This study used the Cre-loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real-time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms. RESULTS Germline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity. CONCLUSIONS These findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.
Collapse
Affiliation(s)
- Miki Nishio
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
- Cosmo Bio Co., Ltd.TokyoJapan
| | - Takuya Matsuura
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shunya Hibi
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shiomi Ohta
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Chio Oka
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Noriaki Sasai
- Development Biomedical ScienceNara Institute of Science and TechnologyIkomaJapan
| | - Yasumasa Ishida
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Eishou Matsuda
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| |
Collapse
|
4
|
Herrera-Uribe J, Wiarda JE, Sivasankaran SK, Daharsh L, Liu H, Byrne KA, Smith TPL, Lunney JK, Loving CL, Tuggle CK. Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing. Front Genet 2021; 12:689406. [PMID: 34249103 PMCID: PMC8261551 DOI: 10.3389/fgene.2021.689406] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting, representing Myeloid, NK cells and specific populations of T and B-cells. Transcriptomes for each bulk population of cells were generated by RNA-seq with 10,974 expressed genes detected. Pairwise comparisons between cell types revealed specific expression, while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes (SEG) showed high enrichment of biological processes related to the nature of each cell type. Comparison of gene expression indicated highly significant correlations between pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia. Second, higher resolution of distinct cell populations was obtained by single-cell RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and sequenced that produced 28,810 single cell transcriptomes distributed across 36 clusters and classified into 13 general cell types including plasmacytoid dendritic cells (DC), conventional DCs, monocytes, B-cell, conventional CD4 and CD8 αβ T-cells, NK cells, and γδ T-cells. Signature gene sets from the human Haemopedia data were assessed for relative enrichment in genes expressed in pig cells and integration of pig scRNA-seq with a public human scRNA-seq dataset provided further validation for similarity between human and pig data. The sorted porcine bulk RNAseq dataset informed classification of scRNA-seq PBMC populations; specifically, an integration of the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-positive T-cell populations in the scRNA-seq data. Overall, the data provides deep and well-validated transcriptomic data from sorted PBMC populations and the first single-cell transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of pig genes controlling immunogenetic traits as part of the porcine Functional Annotation of Animal Genomes (FAANG) project, as well as further study of, and development of new reagents for, porcine immunology.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jayne E. Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
- Immunobiology Graduate Program, Iowa State University, Ames, IA, United States
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
| | - Sathesh K. Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
- Genome Informatics Facility, Iowa State University, Ames, IA, United States
| | - Lance Daharsh
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | | - Joan K. Lunney
- USDA-ARS, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | |
Collapse
|