1
|
Gerhart J, George-Weinstein M. Myo/Nog Cells: The Jekylls and Hydes of the Lens. Cells 2023; 12:1725. [PMID: 37443759 PMCID: PMC10340492 DOI: 10.3390/cells12131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors and functions in other tissues are integrated into the narrative of our research that spans over three decades, examines multiple species and progresses from early stages of embryonic development to aging adults. Myo/Nog cells were discovered in the embryonic epiblast by their co-expression of the skeletal muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1. They were tracked from the epiblast into the developing lens, revealing heterogeneity of cell types within this structure. Depletion of Myo/Nog cells in the epiblast results in eye malformations arising from the absence of Noggin. In the adult lens, Myo/Nog cells are the source of myofibroblasts whose contractions produce wrinkles in the capsule. Eliminating this population within the rabbit lens during cataract surgery reduces posterior capsule opacification to below clinically significant levels. Parallels are drawn between the therapeutic potential of targeting Myo/Nog cells to prevent fibrotic disease in the lens and other ocular tissues.
Collapse
|
2
|
Crispin M, Gerhart J, Heffer A, Martin M, Abdalla F, Bravo-Nuevo A, Philp NJ, Kuriyan AE, George-Weinstein M. Myo/Nog Cells Give Rise to Myofibroblasts During Epiretinal Membrane Formation in a Mouse Model of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 36723927 PMCID: PMC9904330 DOI: 10.1167/iovs.64.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Myo/Nog cells are the source of myofibroblasts in the lens and synthesize muscle proteins in human epiretinal membranes (ERMs). In the current study, we examined the response of Myo/Nog cells during ERM formation in a mouse model of proliferative vitreoretinopathy (PVR). Methods PVR was induced by intravitreal injections of gas and ARPE-19 cells. PVR grade was scored by fundus imaging, optical coherence tomography, and histology. Double label immunofluorescence localization was performed to quantify Myo/Nog cells, myofibroblasts, and leukocytes. Results Myo/Nog cells, identified by co-labeling with antibodies to brain-specific angiogenesis inhibitor 1 (BAI1) and Noggin, increased throughout the eye with induction of PVR and disease progression. They were present on the inner surface of the retina in grades 1/2 PVR and were the largest subpopulation of cells in grades 3 to 6 ERMs. All α-SMA-positive (+) cells and all but one striated myosin+ cell expressed BAI1 in grades 1 to 6 PVR. Folds and areas of retinal detachment were overlain by Myo/Nog cells containing muscle proteins. Low numbers of CD18, CD68, and CD45+ leukocytes were detected throughout the eye. Small subpopulations of BAI1+ cells expressed leukocyte markers. ARPE-19 cells were found in the vitreous but were rare in ERMs. Pigmented cells lacking Myo/Nog and muscle cell markers were present in ERMs and abundant within the retina by grade 5/6. Conclusions Myo/Nog cells differentiate into myofibroblasts that appear to contract and produce retinal folds and detachment. Targeting BAI1 for Myo/Nog cell depletion may be a pharmacological approach to preventing and treating PVR.
Collapse
Affiliation(s)
- Mara Crispin
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Alison Heffer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Mark Martin
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Fathma Abdalla
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Arturo Bravo-Nuevo
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Nancy J. Philp
- Sydney Kimmel Medical School of Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States,Current address: Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | | |
Collapse
|
3
|
Joseph-Pauline S, Morrison N, Braccia M, Payne A, Gugerty L, Mostoller J, Lecker P, Tsai EJ, Kim J, Martin M, Brahmbhatt R, Gorski G, Gerhart J, George-Weinstein M, Stone J, Purushothuman S, Bravo-Nuevo A. Acute Response and Neuroprotective Role of Myo/Nog Cells Assessed in a Rat Model of Focal Brain Injury. Front Neurosci 2021; 15:780707. [PMID: 34949984 PMCID: PMC8689062 DOI: 10.3389/fnins.2021.780707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Focal brain injury in the form of a needlestick (NS) results in cell death and induces a self-protective response flanking the lesion. Myo/Nog cells are identified by their expression of bone morphogenetic protein inhibitor Noggin, brain-specific angiogenesis inhibitor 1 (BAI1) and the skeletal muscle specific transcription factor MyoD. Myo/Nog cells limit cell death in two forms of retinopathy. In this study, we examined the acute response of Myo/Nog cells to a NS lesion that extended from the rat posterior parietal cortex to the hippocampus. Myo/Nog cells were identified with antibodies to Noggin and BAI1. These cells were the primary source of both molecules in the uninjured and injured brain. One day after the NS, the normally small population of Myo/Nog cells expanded approximately eightfold within a 1 mm area surrounding the lesion. Myo/Nog cells were reduced by approximately 50% along the lesion with an injection of the BAI1 monoclonal antibody and complement. The number of dying cells, identified by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), was unchanged at this early time point in response to the decrease in Myo/Nog cells. However, increasing the number of Myo/Nog cells within the lesion by injecting BAI1-positive (+) cells isolated from the brains of other animals, significantly reduced cell death and increased the number of NeuN+ neurons compared to brains injected with phosphate buffered saline or exogenous BAI1-negative cells. These findings demonstrate that Myo/Nog cells rapidly react to injury within the brain and increasing their number within the lesion is neuroprotective.
Collapse
Affiliation(s)
| | - Nathan Morrison
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Michael Braccia
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Alana Payne
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Lindsay Gugerty
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jesse Mostoller
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Paul Lecker
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - E-Jine Tsai
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jessica Kim
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Mark Martin
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Rushil Brahmbhatt
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Grzegorz Gorski
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | | | - Jonathan Stone
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre and Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Arturo Bravo-Nuevo
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|