1
|
Ulfhammer G, Yilmaz A, Mellgren Å, Tyrberg E, Sörstedt E, Hagberg L, Gostner J, Fuchs D, Zetterberg H, Nilsson S, Nyström K, Edén A, Gisslén M. Asymptomatic Cerebrospinal Fluid HIV-1 Escape: Incidence and Consequences. J Infect Dis 2025; 231:e429-e437. [PMID: 39531854 PMCID: PMC11841626 DOI: 10.1093/infdis/jiae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The incidence and clinical relevance of asymptomatic cerebrospinal fluid escape (CSFE) during antiretroviral therapy (ART) is uncertain. We examined the impact and incidence of asymptomatic CSFE in a Swedish HIV cohort. METHODS Neuroasymptomatic people with HIV (PWH) who have been on ART for at least 6 months with suppressed plasma viral load were followed longitudinally. CSFE was defined as either increased CSF HIV-1 RNA with concurrent plasma suppression or CSF HIV-1 RNA exceeding that in plasma when both were quantifiable. Paired CSF and plasma were analyzed for HIV-1 RNA, neopterin, neurofilament light protein (NfL), white blood cell (WBC) count, and albumin ratio. RESULTS Asymptomatic CSFE (cutoff 50 copies/mL) was found in 4 of 173 PWH (2%) and 5 of 449 samples (1%). The corresponding proportions were 8% of PWH and 4% for samples using a 20 copies/mL cutoff for CSF HIV-1 RNA. CSFE samples (cutoff 20 copies/mL) had a 25% higher geometric mean of CSF neopterin (P = .01) and 8% higher albumin ratio (P = .04) compared to samples without CSFE. No differences were observed in CSF NfL levels (P = .8). The odds ratio for increased CSF WBC (≥ 3 cells/μL) in samples with CSFE was 3.9 (P = .004), compared to samples without elevated CSF viral load. CONCLUSIONS Asymptomatic CSFE was identified in only 4 (2%) PWH, with no cases of continuous CSFE observed. Increased CSF HIV-1 RNA was associated with biomarkers of CNS immune activation and blood-brain barrier impairment, but not with biomarkers of neuronal injury.
Collapse
Affiliation(s)
- Gustaf Ulfhammer
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erika Tyrberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erik Sörstedt
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Gostner
- Institute of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
2
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph SB, Swanstrom R, Price RW, Gisslén M. Changes in cerebrospinal fluid proteins across the spectrum of untreated and treated chronic HIV-1 infection. PLoS Pathog 2024; 20:e1012470. [PMID: 39316609 PMCID: PMC11469498 DOI: 10.1371/journal.ppat.1012470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/11/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers contributed by uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of CSF proteins in HIV-associated dementia (HAD) and neurosymptomatic CSF escape (NSE). These reveal a complex but coherent picture of CSF protein changes with highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of systemic HIV-1 progression that included two common patterns, designated as lymphoid and myeloid patterns, related to principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will supplement this report to provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, advancing the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
Affiliation(s)
- Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Paola Cinque
- Unit of Neurovirology, San Raffaele Hospital, Milan, Italy
- Unit of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Ameet Dravid
- HIV Medicine and Infectious Diseases, Poona Hospital and Research Centre, Pune, India
- Noble Hospital and Research Centre, Pune, India
- Ruby Hall Clinic, Pune, India
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dietmar Fuchs
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Johanna Gostner
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Kincer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah Beth Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
3
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph S, Swanstrom R, Price RW, Gisslén M. Changes in Cerebrospinal Fluid Proteins across the Spectrum of Untreated and Treated Chronic HIV-1 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592451. [PMID: 38746436 PMCID: PMC11092784 DOI: 10.1101/2024.05.03.592451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers that included uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of the CSF proteins in HIV-associated dementia ( HAD ) and neurosymptomatic CSF escape ( NSE ). These reveal a complex but coherent picture of CSF protein changes that includes highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of neuroasymptomatic systemic HIV-1 progression, including two common patterns, designated as lymphoid and myeloid patterns, related to the principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, and further the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
|
4
|
Hagberg L, Gisslén M. Cohort profile: a longitudinal study of HIV infection in the central nervous system with focus on cerebrospinal fluid - the Gothenburg HIV CSF Study Cohort. BMJ Open 2023; 13:e070693. [PMID: 37197824 PMCID: PMC10193099 DOI: 10.1136/bmjopen-2022-070693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
PURPOSE In order to enable long-term follow-up of the natural course of HIV infection in the central nervous system, a longitudinal cohort study with repeated cerebrospinal fluid (CSF) analyses at intervals over time was initiated in 1985. When antiretrovirals against HIV were introduced in the late 1980s, short-term and long-term effects of various antiretroviral treatment (ART) regimens were added to the study. PARTICIPANTS All adult people living with HIV (PLWH) who were diagnosed at or referred to the Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden were asked to participate in the Gothenburg HIV CSF Study Cohort. PLWH with neurological symptoms or other clinical symptoms of HIV, as well as those with no symptoms of HIV infection, were included. Most participants were asymptomatic, which distinguishes this cohort from most other international HIV CSF studies. In addition, HIV-negative controls were recruited. These included people on HIV pre-exposure prophylaxis who served as lifestyle-matched controls to HIV-infected men who have sex with men. Since lumbar puncture (LP) is an invasive procedure, some PLHW only consented to participate in one examination. Furthermore, at the beginning of the study, several participants were lost to follow-up having died from AIDS. Of 662 PLWH where an initial LP was done, 415 agreed to continue with follow-up. Among the 415, 56 only gave permission to be followed with LP for less than 1 year, mainly to analyse the short-term effect of ART. The remaining 359 PLWH were followed up with repeated LP for periods ranging from >1 to 30 years. This group was defined as the 'longitudinal cohort'. So far, on 7 April 2022, 2650 LP and samplings of paired CSF/blood had been performed, providing a unique biobank. FINDINGS TO DATE A general finding during the 37-year study period was that HIV infection in the central nervous system, as mirrored by CSF findings, appears early in the infectious course of the disease and progresses slowly in the vast majority of untreated PLWH. Combination ART has been highly effective in reducing CSF viral counts, inflammation and markers of neural damage. Minor CSF signs of long-term sequels or residual inflammatory activity and CSF escape (viral CSF blips) have been observed during follow-up. The future course of these changes and their clinical impact require further studies. FUTURE PLANS PLWH today have a life expectancy close to that of non-infected people. Therefore, our cohort provides a unique opportunity to study the long-term effects of HIV infection in the central nervous system and the impact of ART and is an ongoing study.
Collapse
Affiliation(s)
- Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Trunfio M, Pinnetti C, Arsuffi S, Bai F, Celani L, D'Ettorre G, Vera JH, D'Arminio Monforte A, Focà E, Ghisetti V, Bonora S, Antinori A, Calcagno A. The presence of resistance‐associated mutations in reverse transcriptase gene is associated with cerebrospinal fluid HIV‐1 escape: A multicentric retrospective analysis. J Med Virol 2023; 95:e28704. [PMID: 36967541 DOI: 10.1002/jmv.28704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Higher risk of cerebrospinal fluid escape (CVE) has been associated with the use of specific antiretroviral (ARV) classes, such as protease inhibitors. We assessed whether archived resistance-associated mutations (RAMs) can mediate this relationship by identifying patients treated with incompletely active antiretroviral regimens. A retrospective multicentric study on 282 adult people with HIV on antiretroviral therapy (ART) and available historical plasma genotype resistance testing (HGRT) for reverse transcriptase (RT) and protease genes between 2001 and 2021. The odds ratio for demographic, clinic-, and ART-related variables and CVE was estimated by multivariable modeling. HGRT-adjusted central nervous system effectiveness penetration (CPE) score was computed in modeling the risk. Median age, plasma VL, and CD4 count were 49 years, <50 copies/mL, and 310 cells/μL. CVE was detected in 51 participants (17.0%). No difference in CVE prevalence was observed according to ART type, number of ARVs or ARV classes. Participants with CVE had more frequently plasma (52.9% vs. 32.1%, p = 0.005) and CSF RAMs in RT (n = 63, 57.1% vs. 28.6%, p = 0.029), but not in protease gene. The presence of plasma RAMs in RT associated with increased odds of CVE in adjusted analyses (aOR 3.9, p < 0.001) and in models restricted to plasma viral load ≤50 copies/mL (n = 202; aOR 4.3, p = 0.003). CVE risk decreased by 40% per each point increase in HGRT-adjusted CPE score in multivariable models (p < 0.001). Rather than the type of ARV classes or of ART regimens, functional mono or dual regimens caused by the presence of RAMs affecting ART components may explain the majority of cases of CVE.
Collapse
Affiliation(s)
- Mattia Trunfio
- Unit of Infectious Diseases, Amedeo di Savoia Hospital at Department of Medical Sciences University of Turin Turin Italy
| | - Carmela Pinnetti
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS Rome Italy
| | - Stefania Arsuffi
- Department of Clinical and Experimental Sciences, Division of Infectious and Tropical Diseases, Spedali Civili General Hospital University of Brescia Brescia Italy
| | - Francesca Bai
- Department of Health Sciences, Clinic of Infectious Diseases and Tropical Medicine, S.Paolo Hospital, ASST Santi Paolo e Carlo University of Milan Milan Italy
| | - Luigi Celani
- Department of Public Health and Infectious Diseases Azienda Policlinico Umberto I Rome Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases Azienda Policlinico Umberto I Rome Italy
| | - Jaime H. Vera
- Department of Global Health and Infection Brighton and Sussex Medical School Brighton UK
| | - Antonella D'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases and Tropical Medicine, S.Paolo Hospital, ASST Santi Paolo e Carlo University of Milan Milan Italy
| | - Emanuele Focà
- Department of Clinical and Experimental Sciences, Division of Infectious and Tropical Diseases, Spedali Civili General Hospital University of Brescia Brescia Italy
| | - Valeria Ghisetti
- Molecular Biology and Microbiology Unit, Amedeo di Savoia Hospital ASL Città di Torino Turin Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Amedeo di Savoia Hospital at Department of Medical Sciences University of Turin Turin Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS Rome Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Amedeo di Savoia Hospital at Department of Medical Sciences University of Turin Turin Italy
| |
Collapse
|
6
|
Carlander C, Brännström J, Månsson F, Elvstam O, Albinsson P, Blom S, Mattsson L, Hovmöller S, Norrgren H, Mellgren Å, Svedhem V, Gisslén M, Sönnerborg A. Cohort profile: InfCareHIV, a prospective registry-based cohort study of people with diagnosed HIV in Sweden. BMJ Open 2023; 13:e069688. [PMID: 36931676 PMCID: PMC10030896 DOI: 10.1136/bmjopen-2022-069688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE The Swedish InfCareHIV cohort was established in 2003 to ensure equal and effective care of people living with HIV (PLHIV) and enable long-term follow-up. InfCareHIV functions equally as a decision support system as a quality registry, ensuring up-to-date data reported in real time. PARTICIPANTS InfCareHIV includes data on >99% of all people with diagnosed HIV in Sweden and up to now 13 029 have been included in the cohort. InfCareHIV includes data on HIV-related biomarkers and antiretroviral therapies (ART) and also on demographics, patient-reported outcome measures and patient-reported experience measures. FINDINGS TO DATE Sweden was in 2015 the first country to reach the UNAIDS (United Nations Programme on HIV/AIDS)/WHO's 90-90-90 goals. Late diagnosis of HIV infection was identified as a key problem in the Swedish HIV-epidemic, and low-level HIV viraemia while on ART associated with all-cause mortality. Increased HIV RNA load in the cerebrospinal fluid (CSF) despite suppression of the plasma viral load was found in 5% of PLHIV, a phenomenon referred to as 'CSF viral escape'. Dolutegravir-based treatment in PLHIV with pre-existing nucleoside reverse transcriptase inhibitor-mutations was non-inferior to protease inhibitor-based regimens. An increase of transmitted drug resistance was observed in the InfCareHIV cohort. Lower efficacy for protease inhibitors was not due to lower adherence to treatment. Incidence of type 2 diabetes and insulin resistance was high in the ageing HIV population. Despite ART, the risk of infection-related cancer as well as lung cancer was increased in PLHIV compared with HIV-negative. PLHIV were less likely successfully treated for cervical precancer and more likely to have human papillomavirus types not included in current HPV vaccines. Self-reported sexual satisfaction in PLHIV is improving and is higher in women than men. FUTURE PLANS InfCareHIV provides a unique base to study and further improve long-term treatment outcomes, comorbidity management and health-related quality of life in people with HIV in Sweden.
Collapse
Affiliation(s)
- Christina Carlander
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Johanna Brännström
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm, Sweden
| | - Fredrik Månsson
- Department of Clinical Sciences, Lund University, Infectious Diseases Research Unit, Malmo, Sweden
| | - Olof Elvstam
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Växjö Central Hospital, Växjö, Sweden
| | - Pernilla Albinsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Lena Mattsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sanne Hovmöller
- Department of Infectious Diseases, Sunderby Hospital, Lulea, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences, Lund University Faculty of Science, Lund, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Veronica Svedhem
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenbrug, Sweden
| | - Anders Sönnerborg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Ulfhammer G, Edén A, Antinori A, Brew BJ, Calcagno A, Cinque P, De Zan V, Hagberg L, Lin A, Nilsson S, Oprea C, Pinnetti C, Spudich S, Trunfio M, Winston A, Price RW, Gisslén M. Cerebrospinal Fluid Viral Load Across the Spectrum of Untreated Human Immunodeficiency Virus Type 1 (HIV-1) Infection: A Cross-Sectional Multicenter Study. Clin Infect Dis 2022; 75:493-502. [PMID: 34747481 PMCID: PMC9427147 DOI: 10.1093/cid/ciab943] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The aim of this large multicenter study was to determine variations in cerebrospinal fluid (CSF) HIV-RNA in different phases of untreated human immunodeficiency virus type 1 (HIV-1) infection and its associations with plasma HIV-RNA and other biomarkers. METHODS Treatment naive adults with available CSF HIV-RNA quantification were included and divided into groups representing significant disease phases. Plasma HIV-RNA, CSF white blood cell count (WBC), neopterin, and albumin ratio were included when available. RESULTS In total, 1018 patients were included. CSF HIV-RNA was in median (interquartile range [IQR]) 1.03 log10 (0.37-1.86) copies/mL lower than in plasma, and correlated with plasma HIV-RNA (r = 0.44, P < .01), neopterin concentration in CSF (r = 0.49, P < .01) and in serum (r = 0.29, P < .01), CSF WBC (r = 0.34, P < .01) and albumin ratio (r = 0.25, P < .01). CSF HIV-RNA paralleled plasma HIV-RNA in all groups except neuroasymptomatic patients with advanced immunodeficiency (CD4 < 200) and patients with HIV-associated dementia (HAD) or opportunistic central nervous system (CNS) infections. Patients with HAD had the highest CSF HIV-RNA (in median [IQR] 4.73 (3.84-5.35) log10 copies/mL). CSF > plasma discordance was found in 126 of 972 individuals (13%) and varied between groups, from 1% in primary HIV, 11% in neuroasymptomatic groups, up to 30% of patients with HAD. CONCLUSIONS Our study confirms previous smaller observations of variations in CSF HIV-RNA in different stages of HIV disease. Overall, CSF HIV-RNA was approximately 1 log10 copies/mL lower in CSF than in plasma, but CSF discordance was found in a substantial minority of subjects, most commonly in patients with HAD, indicating increasing CNS compartmentalization paralleling disease progression.
Collapse
Affiliation(s)
- Gustaf Ulfhammer
- Correspondence: G. Ulfhammer, Dept. of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, SE-416 85 Gothenburg, Sweden ()
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | | | - Bruce J Brew
- Departments of Neurology and Immunology, Peter Duncan Neurosciences Unit St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, University of New South Wales and University of Notre Dame, Australia
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | | | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Amy Lin
- Stanford University School of Medicine, Department of Biomedical Data Science, Palo Alto, California, USA
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Cristiana Oprea
- Carol Davila University of Medicine and Pharmacy, Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Carmela Pinnetti
- National Institute of Infectious Diseases L. Spallanzani, Rome, Italy
| | | | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Richard W Price
- University of California at San Francisco, San Francisco, California, USA
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| |
Collapse
|
8
|
Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 2022; 49:10865-10874. [PMID: 35900613 DOI: 10.1007/s11033-022-07755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neurological disorders are structural, biochemical, and electrical abnormalities that affect the peripheral and central nervous systems. Paralysis, muscle weakness, tremors, spasms, and partial or complete loss of sensation are some symptoms of these disorders. Neurorehabilitation is the main treatment for neurological disorders. Treatments can improve the quality of life of patients. Neuroprotective substances of natural origin are used for the treatments of these disorders. METHODS AND RESULTS Online databases, such as Google Scholar, PubMed, ScienceDirect, and Scopus were searched to evaluate articles from 1981-2021 using the Mesh words of geraniol (GER), neurological disorders, epilepsy, spinal cord injury (SCI), Parkinson's diseases (PD), and depression. A total of 87 studies were included in this review. GER with antioxidant, anti-inflammatory, and neuroprotective effects can improve the symptoms and reduce the progression of neurological diseases. GER exhibits neuroprotective effects by binding to GABA and glycine receptors as well as by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway and regulating the expression of nucleotide-binding oligomerization of NLRP3 inflammasome. In this study, the effect of GER was investigated on neurological disorders, such as epilepsy, SCI, PD, and depression. CONCLUSION Although the medicinal uses of GER have been reported, more clinical and experimental studies are needed to investigate the effect of using traditional medicine on improving lifethreatening diseases and the quality of life of patients.
Collapse
|
9
|
Meyer AC, Njamnshi AK, Gisslen M, Price RW. Neuroimmunology of CNS HIV Infection: A Narrative Review. Front Neurol 2022; 13:843801. [PMID: 35775044 PMCID: PMC9237409 DOI: 10.3389/fneur.2022.843801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
This short review provides an overview of the interactions of human immunodeficiency virus type 1 (HIV), immune and inflammatory reactions, and CNS injury over the course of infection. Systemic infection is the overall driver of disease and serves as the “platform” for eventual CNS injury, setting the level of immune dysfunction and providing both the HIV seeding and immune-inflammatory responses to the CNS. These systemic processes determine the timing of and vulnerability to HIV-related neuronal injury which occurs in a separate “compartment” with features that parallel their systemic counterparts but also evolve independently. Direct CNS HIV infection, along with opportunistic infections, can have profound neurological consequences for the infected individual. HIV-related CNS morbidities are of worldwide importance but are enhanced by the particular epidemiological, socioeconomic and environmental factors that heighten the impact of HIV infection in Africa.
Collapse
Affiliation(s)
- Ana-Claire Meyer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alfred Kongnyu Njamnshi
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Richard W. Price
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, United States
- *Correspondence: Richard W. Price
| |
Collapse
|
10
|
Biotypes of HIV-associated neurocognitive disorders based on viral and immune pathogenesis. Curr Opin Infect Dis 2022; 35:223-230. [PMID: 35665716 PMCID: PMC9179892 DOI: 10.1097/qco.0000000000000825] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disorders (HAND) continues to be prevalent in people living with HIV despite antiretroviral therapy. However, understanding disease mechanisms and identifying therapeutic avenues has been challenging. One of the challenges is that HAND is a heterogeneous disease and that patients identified with similar impairments phenotypically may have very different underlying disease processes. As the NeuroAIDS field is re-evaluating the approaches used to identify patients with HIV-associated neurological impairments, we propose the subtyping of patients into biotypes based on viral and immune pathogenesis. RECENT FINDINGS Here we review the evidence supporting subtyping patients with HIV-associated neurological complications into four biotypes: macrophage-mediated HIV encephalitis, CNS viral escape, T-cell-mediated HIV encephalitis, and HIV protein-associated encephalopathy. SUMMARY Subtyping patients into subgroups based on biotypes has emerged as a useful approach for studying heterogeneous diseases. Understanding biotypes of HIV-associated neurocognitive impairments may therefore enable better understanding of disease mechanisms, allow for the development of prognostic and diagnostic markers, and could ultimately guide therapeutic decisions.
Collapse
|
11
|
Abstract
A 52-year-old woman with HIV and recent antiretroviral therapy non-adherence presented with a 5-day history of widespread painful vesicular skin lesions. Direct fluorescent antibody testing of the skin lesions was positive for varicella zoster virus (VZV). On day 3, she developed profound right upper extremity weakness. MRI of the brain and cervical spine was suggestive of VZV myelitis. Lumbar puncture was positive for VZV PCR in the cerebrospinal fluid (CSF) and CSF HIV viral load was detected at 1030 copies/mL, indicating 'secondary' HIV CSF escape. She was treated with intravenous acyclovir for 4 weeks and subsequent oral therapy with famciclovir then valacyclovir for 6 weeks. She also received dexamethasone. The patient had an almost full recovery at 6 months. Myelitis is a rare complication of reactivated VZV infection that can have atypical presentation in immunocompromised patients. Such 'secondary' HIV CSF escape should be considered in immunosuppressed patients with concomitant central nervous system infection.
Collapse
Affiliation(s)
- Julian J Weiss
- Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Serena Spudich
- Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lydia Barakat
- Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Gisslen M, Keating SM, Spudich S, Arechiga V, Stephenson S, Zetterberg H, Di Germanio C, Blennow K, Fuchs D, Hagberg L, Norris PJ, Peterson J, Shacklett BL, Yiannoutsos CT, Price RW. Compartmentalization of cerebrospinal fluid inflammation across the spectrum of untreated HIV-1 infection, central nervous system injury and viral suppression. PLoS One 2021; 16:e0250987. [PMID: 33983973 PMCID: PMC8118251 DOI: 10.1371/journal.pone.0250987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To characterize the evolution of central nervous system (CNS) inflammation in HIV-1 infection applying a panel of cerebrospinal fluid (CSF) inflammatory biomarkers to grouped subjects representing a broad spectrum of systemic HIV-1 immune suppression, CNS injury and viral control. METHODS This is a cross-sectional analysis of archived CSF and blood samples, assessing concentrations of 10 functionally diverse soluble inflammatory biomarkers by immunoassays in 143 HIV-1-infected subjects divided into 8 groups: untreated primary HIV-1 infection (PHI); four untreated groups defined by their blood CD4+ T lymphocyte counts; untreated patients presenting with subacute HIV-associated dementia (HAD); antiretroviral-treated subjects with ≥1 years of plasma viral suppression; and untreated elite controllers. Twenty HIV-1-uninfected controls were included for comparison. Background biomarkers included blood CD4+ and CD8+ T lymphocytes, CSF and blood HIV-1 RNA, CSF white blood cell (WBC) count, CSF/blood albumin ratio, CSF neurofilament light chain (NfL), and CSF t-tau. FINDINGS HIV-1 infection was associated with a broad compartmentalized CSF inflammatory response that developed early in its course and changed with systemic disease progression, development of neurological injury, and viral suppression. CSF inflammation in untreated individuals without overt HAD exhibited at least two overall patterns of inflammation as blood CD4+ T lymphocytes decreased: one that peaked at 200-350 blood CD4+ T cells/μL and associated with lymphocytic CSF inflammation and HIV-1 RNA concentrations; and a second that steadily increased through the full range of CD4+ T cell decline and associated with macrophage responses and increasing CNS injury. Subacute HAD was distinguished by a third inflammatory profile with increased blood-brain barrier permeability and robust combined lymphocytic and macrophage CSF inflammation. Suppression of CSF and blood HIV-1 infections by antiretroviral treatment and elite viral control were associated with reduced CSF inflammation, though not fully to levels found in HIV-1 seronegative controls.
Collapse
Affiliation(s)
- Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sheila M. Keating
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Victor Arechiga
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sophie Stephenson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Clara Di Germanio
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philip J. Norris
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Julia Peterson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, University of California Davis, Davis CA, United States of America
| | - Constantin T. Yiannoutsos
- Department of Biostatistics, Indiana University R.M. Fairbanks School of Public Health, Indianapolis, IN, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|