1
|
Rolland M, Zai AT, Hahnloser RHR, Del Negro C, Giret N. Visually-guided compensation of deafening-induced song deterioration. Front Psychol 2025; 16:1521407. [PMID: 39981385 PMCID: PMC11839652 DOI: 10.3389/fpsyg.2025.1521407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Human language learning and maintenance depend primarily on auditory feedback but are also shaped by other sensory modalities. Individuals who become deaf after learning to speak (post-lingual deafness) experience a gradual decline in their language abilities. A similar process occurs in songbirds, where deafness leads to progressive song deterioration. However, songbirds can modify their songs using non-auditory cues, challenging the prevailing assumption that auditory feedback is essential for vocal control. In this study, we investigated whether deafened birds could use visual cues to prevent or limit song deterioration. We developed a new metric for assessing syllable deterioration called the spectrogram divergence score. We then trained deafened birds in a behavioral task where the spectrogram divergence score of a target syllable was computed in real-time, triggering a contingent visual stimulus based on the score. Birds exposed to the contingent visual stimulus-a brief light extinction-showed more stable song syllables than birds that received either no light extinction or randomly triggered light extinction. Notably, this effect was specific to the targeted syllable and did not influence other syllables. This study demonstrates that deafness-induced song deterioration in birds can be partially mitigated with visual cues.
Collapse
Affiliation(s)
- Manon Rolland
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Anja T. Zai
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Catherine Del Negro
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| |
Collapse
|
2
|
Coulter A, Prather JF. Role of the ventral portion of intermediate arcopallium in stability of female Bengalese finch song preferences. Front Psychol 2025; 15:1490858. [PMID: 39877227 PMCID: PMC11772413 DOI: 10.3389/fpsyg.2024.1490858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
The process of decision making is a complex procedure influenced by both external and internal conditions. Songbirds provide an excellent model to investigate the neural mechanisms of decision making, because females rely on acoustic signals called songs as important stimuli in directing their mate choice. Previous experiments by our group and others have implicated secondary auditory brain sites in female evaluation of song quality, including the caudal portions of the nidopallium (NC) and mesopallium (CM). Recent pathway tracing experiments reveal a convergence of those sites onto a third region, the ventral portion of the intermediate arcopallium (AIV), suggesting that AIV may also play an important role in song evaluation and mate choice. Here we combined behavioral testing with lesion inactivation to investigate the role of AIV in song preference of female Bengalese finches (Lonchura striata domestica). Inactivation of AIV was associated with destabilization of rank ordering of song preferences. These data suggest a model in which the convergence of auditory activity in AIV plays an important role in female perception of song quality and production of courtship behaviors. Together with previous results that also demonstrate a role for the auditory areas that converge onto AIV, these findings extend the experimental tractability of this emerging animal model of sensory perception and decision making.
Collapse
Affiliation(s)
| | - Jonathan F. Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
3
|
Zai AT, Rodrigues DI, Stepien AE, Lorenz C, Giret N, Adam I, Hahnloser RHR. Familiarity of an environment prevents song suppression in isolated zebra finches. PLoS One 2025; 20:e0307126. [PMID: 39787086 PMCID: PMC11717181 DOI: 10.1371/journal.pone.0307126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/16/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the wide use of zebra finches as an animal model to study vocal learning and production, little is known about impacts on their welfare caused by routine experimental manipulations such as changing their social context. Here we conduct a post-hoc analysis of singing rate, an indicator of positive welfare, to gain insights into stress caused by social isolation, a common experimental manipulation. We find that isolation in an unfamiliar environment reduces singing rate for several days, indicating the presence of an acute stressor. However, we find no such decrease when social isolation is caused by either removal of a social companion or by transfer to a familiar environment. Furthermore, during repeated brief periods of isolation, singing rate remains high when isolation is induced by removal of social companions, but it fails to recover from a suppressed state when isolation is induced by recurrent transfer to an unknown environment. These findings suggest that stress from social isolation is negligible compared to stress caused by environmental changes and that frequent short visits of an unfamiliar environment are detrimental rather than beneficial. Together, these insights can serve to refine experimental studies and design paradigms maximizing the birds' wellbeing and vocal output.
Collapse
Affiliation(s)
- Anja T. Zai
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Diana I. Rodrigues
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna E. Stepien
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Corinna Lorenz
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, France
| | - Iris Adam
- Department of Biology, University of Southern Denmark, Denmark
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Gaviraghi Mussoi J, MacQueen RA, Stanley MC, Cain KE. Experimentally elevated corticosterone increases song output and complexity in common mynas. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:733-742. [PMID: 38651561 DOI: 10.1002/jez.2817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Vocalization is an important communication tool that can reflect many aspects of an individual's internal and external condition. This is especially true for birds. Previous research has shown that bird calls and songs change in response to a variety of potential stressors, although the extent and direction of the changes depend on the nature of the stressor and the environment. Circulating glucocorticoids, such as corticosterone, often increase in response to stressors and mediate some of the observed changes via alterations of the individual's physiological state. Acute elevations of corticosterone often occur as a physiological response to short-term stressors; however, the effects of this elevation on adult vocalizations have not been well documented. Here, we experimentally elevated corticosterone at two different levels using a noninvasive method and examined the effects on the vocal communication of male and female adult common mynas (Acridotheres tristis). Corticosterone elevation temporarily increased song output and some measures of song complexity, while call output decreased. These effects were dosage dependent (higher corticosterone levels had a stronger effect), most evident 40 min after ingestion, and some vocal changes were sex-specific. Future studies should investigate whether the changes in vocal performance due to elevated glucocorticoids have consequences for the birds' behavior, reproductive success, and survival.
Collapse
Affiliation(s)
- Juliane Gaviraghi Mussoi
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rebecca A MacQueen
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret C Stanley
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Tostado-Marcos P, Arneodo EM, Ostrowski L, Brown DE, Perez XA, Kadwory A, Stanwicks LL, Alothman A, Gentner TQ, Gilja V. Neural population dynamics in songbird RA and HVC during learned motor-vocal behavior. ARXIV 2024:arXiv:2407.06244v1. [PMID: 39040642 PMCID: PMC11261980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Complex, learned motor behaviors involve the coordination of large-scale neural activity across multiple brain regions, but our understanding of the population-level dynamics within different regions tied to the same behavior remains limited. Here, we investigate the neural population dynamics underlying learned vocal production in awake-singing songbirds. We use Neuropixels probes to record the simultaneous extracellular activity of populations of neurons in two regions of the vocal motor pathway. In line with observations made in non-human primates during limb-based motor tasks, we show that the population-level activity in both the premotor nucleus HVC and the motor nucleus RA is organized on low-dimensional neural manifolds upon which coordinated neural activity is well described by temporally structured trajectories during singing behavior. Both the HVC and RA latent trajectories provide relevant information to predict vocal sequence transitions between song syllables. However, the dynamics of these latent trajectories differ between regions. Our state-space models suggest a unique and continuous-over-time correspondence between the latent space of RA and vocal output, whereas the corresponding relationship for HVC exhibits a higher degree of neural variability. We then demonstrate that comparable high-fidelity reconstruction of continuous vocal outputs can be achieved from HVC and RA neural latents and spiking activity. Unlike those that use spiking activity, however, decoding models using neural latents generalize to novel sub-populations in each region, consistent with the existence of preserved manifolds that confine vocal-motor activity in HVC and RA.
Collapse
Affiliation(s)
- Pablo Tostado-Marcos
- Department of Bioengineering
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Lauren Ostrowski
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Daril E Brown
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Adam Kadwory
- Department of Electrical and Computer Engineering
| | - Lauren L Stanwicks
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Timothy Q Gentner
- Department of Psychology
- Department of Neurobiology
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Zai AT, Stepien AE, Giret N, Hahnloser RHR. Goal-directed vocal planning in a songbird. eLife 2024; 12:RP90445. [PMID: 38959057 PMCID: PMC11221833 DOI: 10.7554/elife.90445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Songbirds' vocal mastery is impressive, but to what extent is it a result of practice? Can they, based on experienced mismatch with a known target, plan the necessary changes to recover the target in a practice-free manner without intermittently singing? In adult zebra finches, we drive the pitch of a song syllable away from its stable (baseline) variant acquired from a tutor, then we withdraw reinforcement and subsequently deprive them of singing experience by muting or deafening. In this deprived state, birds do not recover their baseline song. However, they revert their songs toward the target by about 1 standard deviation of their recent practice, provided the sensory feedback during the latter signaled a pitch mismatch with the target. Thus, targeted vocal plasticity does not require immediate sensory experience, showing that zebra finches are capable of goal-directed vocal planning.
Collapse
Affiliation(s)
- Anja T Zai
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Anna E Stepien
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS, Université Paris-SaclaySaclayFrance
| | - Richard HR Hahnloser
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
7
|
Asogwa CN, Zhao C, Polzin BJ, Maksimoski AN, Heimovics SA, Riters LV. Distinct patterns of activity within columns of the periaqueductal gray are associated with functionally distinct birdsongs. Ann N Y Acad Sci 2023; 1530:161-181. [PMID: 37800392 PMCID: PMC10841217 DOI: 10.1111/nyas.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Male songbirds produce female-directed songs in spring that convey a state of sexual motivation. Many songbirds also sing in fall flocks in affiliative/gregarious contexts in which song is linked to an intrinsic positive affective state. The periaqueductal gray (PAG) in mammals, which is organized into functional columns, integrates information from multiple brain regions and relays this information to vocal motor areas so that an animal emits a vocal signal reflective of its affective state. Here, we test the hypothesis that distinct columns in the songbird PAG play roles in the distinct affective states communicated by sexually motivated and gregarious song. We quantified the numbers of immediate early gene ZENK-positive cells in 16 PAG subregions in male European starlings (Sturnus vulgaris) after singing gregarious or sexually motivated song. Results suggest that distinct PAG columns in songbirds context-specifically regulate song, agonistic, and courtship behaviors. A second exploratory, functional tract-tracing study also demonstrated that inputs to the PAG from specific subregions of the medial preoptic nucleus may contribute to gregarious song and behaviors indicative of social dominance. Together, findings suggest that conserved PAG columns and inputs from the preoptic nucleus may play a role in context-specific vocal and other social behaviors.
Collapse
Affiliation(s)
- Chinweike N. Asogwa
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Brandon J. Polzin
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sarah A. Heimovics
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Riters LV, Polzin BJ, Maksimoski AN, Stevenson SA, Alger SJ. Birdsong and the Neural Regulation of Positive Emotion. Front Psychol 2022; 13:903857. [PMID: 35814050 PMCID: PMC9258629 DOI: 10.3389/fpsyg.2022.903857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Birds are not commonly admired for emotional expression, and when they are, the focus is typically on negative states; yet vocal behavior is considered a direct reflection of an individual's emotional state. Given that over 4000 species of songbird produce learned, complex, context-specific vocalizations, we make the case that songbirds are conspicuously broadcasting distinct positive emotional states and that hearing songs can also induce positive states in other birds. Studies are reviewed that demonstrate that that the production of sexually motivated song reflects an emotional state of anticipatory reward-seeking (i.e., mate-seeking), while outside the mating context song in gregarious flocks reflects a state of intrinsic reward. Studies are also reviewed that demonstrate that hearing song induces states of positive anticipation and reward. This review brings together numerous studies that highlight a potentially important role for the songbird nucleus accumbens, a region nearly synonymous with reward in mammals, in positive emotional states that underlie singing behavior and responses to song. It is proposed that the nucleus accumbens is part of an evolutionarily conserved circuitry that contributes context-dependently to positive emotional states that motivate and reward singing behavior and responses to song. Neural mechanisms that underlie basic emotions appear to be conserved and similar across vertebrates. Thus, these findings in songbirds have the potential to provide insights into interventions that can restore positive social interactions disrupted by mental health disorders in humans.
Collapse
Affiliation(s)
- Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Brandon J. Polzin
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sharon A. Stevenson
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sarah J. Alger
- Department of Biology, University of Wisconsin—Stevens Point, Stevens Point, WI, United States
| |
Collapse
|
10
|
Riters LV, Stevenson SA. Using seasonality and birdsong to understand mechanisms underlying context-appropriate shifts in social motivation and reward. Horm Behav 2022; 142:105156. [PMID: 35313200 PMCID: PMC9382228 DOI: 10.1016/j.yhbeh.2022.105156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
Social motivation and reward are dynamic and flexible, shifting adaptively across contexts to meet changing social demands. This is exceptionally apparent when seasonal contexts are considered in seasonally breeding songbirds as they cycle from periods of sexual motivation and reward during the breeding season to periods of extreme gregariousness outside the breeding season when non-sexual social interactions gain reward value, motivating birds to form flocks. Here we review evidence demonstrating a key integrative role for the medial preoptic area (mPOA) in the seasonally-appropriate adjustment of behaviors, with seasonal changes in dopamine activity in mPOA adjusting social motivation and changes in opioid activity modifying social reward. Experiments demonstrate that dramatic seasonal fluctuations in steroid hormone concentrations alter patterns of opioid- and dopamine-related protein and gene expression in mPOA to modify social motivation and reward to meet seasonal changes in social demands. These studies of birdsong and seasonality provide new insights into neural and endocrine mechanisms underlying adaptive changes in social motivation and reward and highlight an underappreciated, evolutionarily conserved role for the mPOA in important social behaviors in non-reproductive contexts.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sharon A Stevenson
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Arneodo EM, Chen S, Brown DE, Gilja V, Gentner TQ. Neurally driven synthesis of learned, complex vocalizations. Curr Biol 2021; 31:3419-3425.e5. [PMID: 34139192 DOI: 10.1016/j.cub.2021.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/03/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022]
Abstract
Brain machine interfaces (BMIs) hold promise to restore impaired motor function and serve as powerful tools to study learned motor skill. While limb-based motor prosthetic systems have leveraged nonhuman primates as an important animal model,1-4 speech prostheses lack a similar animal model and are more limited in terms of neural interface technology, brain coverage, and behavioral study design.5-7 Songbirds are an attractive model for learned complex vocal behavior. Birdsong shares a number of unique similarities with human speech,8-10 and its study has yielded general insight into multiple mechanisms and circuits behind learning, execution, and maintenance of vocal motor skill.11-18 In addition, the biomechanics of song production bear similarity to those of humans and some nonhuman primates.19-23 Here, we demonstrate a vocal synthesizer for birdsong, realized by mapping neural population activity recorded from electrode arrays implanted in the premotor nucleus HVC onto low-dimensional compressed representations of song, using simple computational methods that are implementable in real time. Using a generative biomechanical model of the vocal organ (syrinx) as the low-dimensional target for these mappings allows for the synthesis of vocalizations that match the bird's own song. These results provide proof of concept that high-dimensional, complex natural behaviors can be directly synthesized from ongoing neural activity. This may inspire similar approaches to prosthetics in other species by exploiting knowledge of the peripheral systems and the temporal structure of their output.
Collapse
Affiliation(s)
- Ezequiel M Arneodo
- Biocircuits Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; IFLP-CONICET, Departamento de Física, Universidad Nacional de La Plata, CC 67, La Plata 1900, Argentina
| | - Shukai Chen
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Daril E Brown
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Timothy Q Gentner
- Biocircuits Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, 9500 Gilman Drive, La Jolla, CA 92093, USA; Neurobiology Section, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|