1
|
Wang XM, Dai Z, Lu DJ, Bao CQ, Yang NB, Zhou YP. Bicuculline ameliorates metabolic dysfunction-associated steatotic liver disease by inhibiting the nuclear factor-kappa B pathway and reducing lipid accumulation. World J Gastroenterol 2025; 31:105438. [DOI: 10.3748/wjg.v31.i17.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a prominent and pervasive global health challenge. Bicuculline (BIC), which is a key active component of the anti-MASLD prescription "Eight Zhes Decoction", has been preliminarily shown by our research team to have significant potential in treating MASLD.
AIM To determine BIC's efficacy in treating MASLD by regulating lipid metabolism and suppressing hepatic inflammation via nuclear factor-kappa B (NF-κB) pathway, identifying it as a therapeutic candidate.
METHODS This study explored the potential of BIC in preventing and treating MASLD using zebrafish, cellular (HepG2 and AML12), and mouse models.
RESULTS Our results indicate that BIC significantly reduces lipid accumulation and inflammation both in vivo and in vitro. Transcriptomic analysis suggested that the anti-MASLD effects of BIC are linked to the inhibition of the NF-κB pathway, which plays a critical role in mitigating inflammation and lipid deposition.
CONCLUSION This study is the first to demonstrate that BIC specifically alleviates lipid accumulation and hepatic steatosis in MASLD models via the NF-κB signaling pathway. Overall, BIC has emerged as a promising candidate for treating MASLD.
Collapse
Affiliation(s)
- Xiao-Mei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Ze Dai
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Dai-Jun Lu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Chao-Qun Bao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Nai-Bin Yang
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
2
|
Doltchinkova V, Vitkova V, Petkov O, Kitanova M, Stoyanova-Ivanova A, Lozanova S, Ivanov A, Roumenin C. Gamma-Aminobutyric Acid Action on Membrane and Electrical Properties of Synaptosomes and Model Lipid Bilayers. J Membr Biol 2025; 258:173-186. [PMID: 39923215 DOI: 10.1007/s00232-025-00339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Dysfunction of the main inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is the underlying reason behind many neurological disorders including Alzheimer's and Huntington's diseases, autism spectrum disorders, anxiety, depression, hypertension, and cardiovascular diseases, among others. Here, we address neurotransmitter-induced alterations of synaptosomal and model membrane electrical properties for elucidating membrane-related biophysical mechanisms of neurological disorders. We focus on membrane surface characteristics of the pinched off nerve endings synaptosomes, which for decades have been a powerful tool in neurobiology. Microelectrophoretic measurements of GABA-treated negatively charged synaptosomes from rat cerebral cortex reveal lower negative zeta potential as a result of reduced electrical charge on the membrane surface at (1-4 h) after isolation. Conversely, enhancement of the surface parameters of synaptosomes (17-22 h) post isolation is obtained due to additional negatively exposed groups on the surface of the vesicles. The electrical properties of bilayer lipid membranes are probed by electrochemical impedance spectroscopy, reporting as light increase of the membrane electrical capacitance in the presence of GABA, likely related to membrane thinning and dielectric permittivity alterations. The neurotransmitter inhibits sodium-potassium as well as the total ATPase activity and slightly enhances magnesium-ATPase of native synaptic membranes. At low (pM) GABA concentrations the activity of acetylcholinesterase (AChE) in synaptic membranes increases. AChE inhibition is reported at higher GABA concentrations. The relation between the surface electrical properties of cells and the enzymatic activity of brain ATPases and AChE, as examined here, are expected to be helpful in the elucidation of membrane-mediated molecular mechanisms relevant to neurological disorders and conditions.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Institute of Robotics "Saint Apostle and Gospeller Mathew", Bulgarian Academy of Sciences, (IR-BAS), Acad. Georgi Bonchev Str., Bl. 2, P.O. Box 79, 1113, Sofia, Bulgaria.
| | - Victoria Vitkova
- Soft Matter Physics Department, Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria
| | - Ognyan Petkov
- Soft Matter Physics Department, Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria
| | - Meglena Kitanova
- Faculty of Biology, Department of Genetics, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Angelina Stoyanova-Ivanova
- Soft Matter Physics Department, Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria
| | - Siya Lozanova
- Institute of Robotics "Saint Apostle and Gospeller Mathew", Bulgarian Academy of Sciences, (IR-BAS), Acad. Georgi Bonchev Str., Bl. 2, P.O. Box 79, 1113, Sofia, Bulgaria
| | - Avgust Ivanov
- Institute of Robotics "Saint Apostle and Gospeller Mathew", Bulgarian Academy of Sciences, (IR-BAS), Acad. Georgi Bonchev Str., Bl. 2, P.O. Box 79, 1113, Sofia, Bulgaria
| | - Chavdar Roumenin
- Institute of Robotics "Saint Apostle and Gospeller Mathew", Bulgarian Academy of Sciences, (IR-BAS), Acad. Georgi Bonchev Str., Bl. 2, P.O. Box 79, 1113, Sofia, Bulgaria
| |
Collapse
|
3
|
Shi Q, Ren B, Lu X, Zhang L, Wu L, Hu L, Zhang YQ. Neural mechanisms underlying reduced nocifensive sensitivity in autism-associated Shank3 mutant dogs. Mol Psychiatry 2025:10.1038/s41380-025-02952-y. [PMID: 40097608 DOI: 10.1038/s41380-025-02952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Autistic individuals carrying mutations in SHANK3 (encoding a synaptic scaffolding protein) have been consistently reported to exhibit reduced pain sensitivity. However, the neural mechanisms underlying impaired pain processing remain unclear. To investigate the role of SHANK3 in pain processing, we conducted behavioral, electrophysiological, and pharmacological tests upon nociceptive stimulation in a Shank3 mutant dog model. Behaviorally, Shank3 mutant dogs showed reduced nocifensive sensitivity compared to wild-type (WT) dogs. Electrophysiologically, Shank3 mutant dogs exhibited reduced neural responses elicited by the activations of both Aδ- and C-fiber nociceptors. Additionally, Shank3 mutants showed a lower level of aperiodic exponents, which serve as a marker for the excitatory-inhibitory balance of neural activity. The aperiodic exponents mediated the relationship between genotype and nocifensive sensitivity as well as between genotype and neural responses elicited by nociceptive stimuli. Pharmacologically, the reduced nocifensive sensitivity and atypical excitatory-inhibitory balance were rescued by a GABAAR antagonist pentylenetetrazole. These findings highlight the critical role of Shank3 in pain processing and suggest that an impaired excitatory-inhibitory balance may be responsible for the reduced nocifensive reactivity in autism.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Baolong Ren
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejing Lu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Life Sciences, Hubei University, Wuhan, 430415, China.
| |
Collapse
|
4
|
Shi Q, Wu L, Ren B, Guo K, Jiang YH, Zhang YQ, Hu L. Impaired tactile processing in autism-associated Shank3 mutant dogs: neural mechanism and intervention. Sci Bull (Beijing) 2025; 70:483-487. [PMID: 39294081 DOI: 10.1016/j.scib.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Affiliation(s)
- Qi Shi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baolong Ren
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Guo
- School of Psychology, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yong Q Zhang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Hubei University, Wuhan 430415, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Onal Sis C, Okcay Y, Ulusoy KG, Vural IM, Yıldız O. Exploring the antinociceptive effect of taraxasterol in mice: Possible mechanisms. Neurosci Lett 2025; 845:138075. [PMID: 39638086 DOI: 10.1016/j.neulet.2024.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Taraxasterol is the active ingredient of Taraxacum officinale which has been used in traditional medicine for its several therapeutic effects. This study aims first to evaluate the potential spinal/supraspinal and peripheral/visceral antinociceptive effect of taraxasterol and then to investigate the contribution of GABAergic, opioidergic systems, and KATP channels to its antinociceptive effect. METHODS The antinociceptive activity of taraxasterol (2.5, 5, and 10 mg/kg i.p.) was investigated with hot-plate, tail-immersion, and acetic acid-induced abdominal writhing tests (for supraspinal, spinal, peripheral/visceral pain evaluation, respectively) in BALB/c male mice, and percentage of possible maximum effect (MPE%) values were calculated. Mechanism of action studies were performed by pre-administering bicuculline, naloxone, and glibenclamide. RESULTS Taraxasterol increased the MPE% values in hot-plate and tail-immersion tests at 2.5, 5, and 10 mg/kg doses (P < 0.001) and decreased the mean number of writhes at 10 mg/kg in the abdominal writhing test (P < 0.05). Naloxone and bicuculline pre-administration reversed the antinociceptive effect of taraxasterol in hot-plate and tail-immersion tests and it had no effect in the abdominal writhing test. Pre-administration of glibenclamide reversed the antinociceptive effect of taraxasterol in all tests. CONCLUSION Our study is the first to show the involvement of GABAergic and opioidergic systems in the antinociceptive effect of taraxasterol in supraspinal and spinal pain tests, and KATP channels in tests evaluating supraspinal, spinal, and peripheral pain pathways. Taraxasterol is a potential new herbal medicine that can be used for pain control.
Collapse
Affiliation(s)
- Cagil Onal Sis
- Pharmaceuticals and Medical Devices Agency of Türkiye, Department of Clinical Trials, Ankara, Turkey.
| | - Yagmur Okcay
- University of Health Sciences Gulhane Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Kemal Gokhan Ulusoy
- University of Health Sciences Gulhane Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| | - Ismail Mert Vural
- University of Health Sciences Gulhane Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Oguzhan Yıldız
- University of Health Sciences Gulhane Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| |
Collapse
|
6
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. The neurotensin receptor 1 agonist PD149163 alleviates visceral hypersensitivity and colonic hyperpermeability in rat irritable bowel syndrome model. Neurogastroenterol Motil 2024; 36:e14925. [PMID: 39314062 DOI: 10.1111/nmo.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND An impaired intestinal barrier with the activation of corticotropin-releasing factor (CRF), Toll-like receptor 4 (TLR4), and proinflammatory cytokine signaling, resulting in visceral hypersensitivity, is a crucial aspect of irritable bowel syndrome (IBS). The gut exhibits abundant expression of neurotensin; however, its role in the pathophysiology of IBS remains uncertain. This study aimed to clarify the effects of PD149163, a specific agonist for neurotensin receptor 1 (NTR1), on visceral sensation and gut barrier in rat IBS models. METHODS The visceral pain threshold in response to colonic balloon distention was electrophysiologically determined by monitoring abdominal muscle contractions, while colonic permeability was measured by quantifying absorbed Evans blue in colonic tissue in vivo in adult male Sprague-Dawley rats. We employed the rat IBS models, i.e., lipopolysaccharide (LPS)- and CRF-induced visceral hypersensitivity and colonic hyperpermeability, and explored the effects of PD149163. KEY RESULTS Intraperitoneal PD149163 (160, 240, 320 μg kg-1) prevented LPS (1 mg kg-1, subcutaneously)-induced visceral hypersensitivity and colonic hyperpermeability dose-dependently. It also prevented the gastrointestinal changes induced by CRF (50 μg kg-1, intraperitoneally). Peripheral atropine, bicuculline (a GABAA receptor antagonist), sulpiride (a dopamine D2 receptor antagonist), astressin2-B (a CRF receptor subtype 2 [CRF2] antagonist), and intracisternal SB-334867 (an orexin 1 receptor antagonist) reversed these effects of PD149163 in the LPS model. CONCLUSIONS AND INFERENCES PD149163 demonstrated an improvement in visceral hypersensitivity and colonic hyperpermeability in rat IBS models through the dopamine D2, GABAA, orexin, CRF2, and cholinergic pathways. Activation of NTR1 may modulate these gastrointestinal changes, helping to alleviate IBS symptoms.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
7
|
Toso A, Wermuth AP, Arazi A, Braun A, Jong TG', Uhlhaas PJ, Donner TH. 40 Hz Steady-State Response in Human Auditory Cortex Is Shaped by Gabaergic Neuronal Inhibition. J Neurosci 2024; 44:e2029232024. [PMID: 38670804 PMCID: PMC11170946 DOI: 10.1523/jneurosci.2029-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under a placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA blocker memantine. Our findings indicate that the 40 Hz ASSR in the auditory cortex involves synaptic (and likely intracortical) inhibition via the GABAA receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.
Collapse
Affiliation(s)
- Alessandro Toso
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Annika P Wermuth
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Ayelet Arazi
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Anke Braun
- Department of Psychiatry, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Tineke Grent-'t Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin 13353, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin 13353, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
8
|
Nakanishi S, Tamura S, Hirano S, Takahashi J, Kitajima K, Takai Y, Mitsudo T, Togao O, Nakao T, Onitsuka T, Hirano Y. Abnormal phase entrainment of low- and high-gamma-band auditory steady-state responses in schizophrenia. Front Neurosci 2023; 17:1277733. [PMID: 37942136 PMCID: PMC10627971 DOI: 10.3389/fnins.2023.1277733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Gamma-band oscillatory deficits have attracted considerable attention as promising biomarkers of schizophrenia (SZ). Notably, a reduced auditory steady-state response (ASSR) in the low gamma band (40 Hz) is widely recognized as a robust finding among SZ patients. However, a comprehensive investigation into the potential utility of the high-gamma-band ASSR in detecting altered neural oscillations in SZ has not yet been conducted. Methods The present study aimed to assess the ASSR using magnetoencephalography (MEG) data obtained during steady-state stimuli at frequencies of 20, 30, 40, and 80 Hz from 23 SZ patients and 21 healthy controls (HCs). To evaluate the ASSR, we examined the evoked power and phase-locking factor (PLF) in the time-frequency domain for both the primary and secondary auditory cortices. Furthermore, we calculated the phase-locking angle (PLA) to examine oscillatory phase lead or delay in SZ patients. Taking advantage of the high spatial resolution of MEG, we also focused on the hemispheric laterality of low- and high-gamma-band ASSR deficits in SZ. Results We found abnormal phase delay in the 40 Hz ASSR within the bilateral auditory cortex of SZ patients. Regarding the 80 Hz ASSR, our investigation identified an aberrant phase lead in the left secondary auditory cortex in SZ, accompanied by reduced evoked power in both auditory cortices. Discussion Given that abnormal phase lead on 80 Hz ASSR exhibited the highest discriminative power between HC and SZ, we propose that the examination of PLA in the 80 Hz ASSR holds significant promise as a robust candidate for identifying neurophysiological endophenotypes associated with SZ. Furthermore, the left-hemisphere phase lead observed in the deficits of 80 Hz PLA aligns with numerous prior studies, which have consistently proposed that SZ is characterized by left-lateralized brain dysfunctions.
Collapse
Affiliation(s)
- Shoichiro Nakanishi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Mitsudo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Hospital Organization Sakakibara Hospital, Mie, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Jasinskyte U, Buisas R, Griskova-Bulanova I, Guzulaitis R. Auditory steady-state responses in the auditory cortex of mice during estrus cycle. Brain Res 2023; 1810:148376. [PMID: 37121427 DOI: 10.1016/j.brainres.2023.148376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Auditory-steady state responses (ASSRs) disclose brain's potency to oscillate and have been suggested to serve as biomarkers in various psychiatric disorders. GABAergic neurotransmission, a critical component for brain oscillations, is heavily influenced by sex hormones. In line, the severity of symptoms in psychiatric disorders is linked to changes in sex hormones during menstrual cycle. However, how these sex hormones affect ASSRs remain largely unknown. This was addressed by performing chronic recordings of ASSRs in mice while monitoring its estrus cycle. Here, the stability of ASSRs during long term recordings were validated and showed good reliability. 40 Hz ASSRs showed changes throughout estrus cycle where it decreased in metestrus phase compared to diestrus phase. In contrast, other frequency ASSRs did not show significant changes throughout estrus cycle. Taken together, our findings illustrate that the estrus cycle can influence the generation of ASSRs and the phase of the estrus cycle should be taken into consideration when ASSRs are recorded in females.
Collapse
Affiliation(s)
- Urte Jasinskyte
- Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Rokas Buisas
- Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | | | |
Collapse
|
10
|
Cao T, Chen H, Huang W, Xu S, Liu P, Zou W, Pang M, Xu Y, Bai X, Liu B, Rong L, Cui ZK, Li M. hUC-MSC-mediated recovery of subacute spinal cord injury through enhancing the pivotal subunits β3 and γ2 of the GABA A receptor. Theranostics 2022; 12:3057-3078. [PMID: 35547766 PMCID: PMC9065192 DOI: 10.7150/thno.72015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022] Open
Abstract
Rationale: Spinal cord injury (SCI) remains an incurable neurological disorder leading to permanent and profound neurologic deficits and disabilities. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are particularly appealing in SCI treatment to curtail damage, restore homeostasis and possible neural relay. However, the detailed mechanisms underlying hUC-MSC-mediated functional recovery of SCI have not been fully elucidated. The purpose of our current study is to identify novel therapeutic targets and depict the molecular mechanisms underlying the hUC-MSC-mediated recovery of subacute SCI. Methods: Adult female rats suffering from subacute incomplete thoracic SCI were treated with intrathecal transplantation of hUC-MSCs. The beneficial effects of hUC-MSCs on SCI repair were evaluated by a series of behavioral analyses, motor evoked potentials (MEPs) recording of hindlimb and immunohistochemistry. We carried out extensive transcriptome comparative analyses of spinal cord tissues at the lesion site from the subacute phase of SCI (sub-SCI) either treated without (+PBS) or with hUC-MSCs (+MSC) at 0 (sub-SCI), 1, 2, and 4 weeks post-transplantation (wpt), as well as normal spinal cord segments of intact/sham rats (Intact). Adeno-associated virus (AAV)-mediated neuron-specific expression system was employed to functionally screen specific γ-aminobutyric acid type A receptor (GABAAR) subunits promoting the functional recovery of SCI in vivo. The mature cortical axon scrape assay and transplantation of genetically modified MSCs with either overexpression or knockdown of brain-derived neurotrophic factor (BDNF) were employed to demonstrate that hUC-MSCs ameliorated the reduction of GABAAR subunits in the injured spinal cord via BDNF secretion in vitro and in vivo, respectively. Results: Comparative transcriptome analysis revealed the GABAergic synapse pathway is significantly enriched as a main target of hUC-MSC-activated genes in the injured spinal cord. Functional screening of the primary GABAAR subunits uncovered that Gabrb3 and Garbg2 harbored the motor and electrophysiological recovery-promoting competence. Moreover, targeting either of the two pivotal subunits β3 or γ2 in combination with/without the K+/Cl- cotransporter 2 (KCC2) reinforced the therapeutic effects. Mechanistically, BDNF secreted by hUC-MSCs contributed to the upregulation of GABAAR subunits (β3 & γ2) and KCC2 in the injured neurons. Conclusions: Our study identifies a novel mode for hUC-MSC-mediated locomotor recovery of SCI through synergistic upregulation of GABAAR β3 and γ2 along with KCC2 by BDNF secretion, indicating the significance of restoring the excitation/inhibition balance in the injured neurons for the reestablishment of neuronal circuits. This study also provides a potential combinatorial approach by targeting the pivotal subunit β3 or γ2 and KCC2, opening up possibilities for efficacious drug design.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiping Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peilin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiwei Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Ying Xu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
11
|
Cortes-Briones JA. Hearing the Shape of a Drum: Clinical Outcome Prediction in Participants at Clinical High-Risk for Psychosis With the 40-Hz Auditory Steady-State Response Paradigm. Biol Psychiatry 2021; 90:359-361. [PMID: 34446154 DOI: 10.1016/j.biopsych.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Jose A Cortes-Briones
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
12
|
Gamma power abnormalities in a Fmr1-targeted transgenic rat model of fragile X syndrome. Sci Rep 2020; 10:18799. [PMID: 33139785 PMCID: PMC7608556 DOI: 10.1038/s41598-020-75893-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is characteristically displayed intellectual disability, hyperactivity, anxiety, and abnormal sensory processing. Electroencephalography (EEG) abnormalities are also observed in subjects with FXS, with many researchers paying attention to these as biomarkers. Despite intensive preclinical research using Fmr1 knock out (KO) mice, an effective treatment for FXS has yet to be developed. Here, we examined Fmr1-targeted transgenic rats (Fmr1-KO rats) as an alternative preclinical model of FXS. We characterized the EEG phenotypes of Fmr1-KO rats by measuring basal EEG power and auditory steady state response (ASSR) to click trains of stimuli at a frequency of 10–80 Hz. Fmr1-KO rats exhibited reduced basal alpha power and enhanced gamma power, and these rats showed enhanced locomotor activity in novel environment. While ASSR clearly peaked at around 40 Hz, both inter-trial coherence (ITC) and event-related spectral perturbation (ERSP) were significantly reduced at the gamma frequency band in Fmr1-KO rats. Fmr1-KO rats showed gamma power abnormalities and behavioral hyperactivity that were consistent with observations reported in mouse models and subjects with FXS. These results suggest that gamma power abnormalities are a translatable biomarker among species and demonstrate the utility of Fmr1-KO rats for investigating drugs for the treatment of FXS.
Collapse
|