1
|
Jiang C, Ding Q, He Y, Li Y, Gao Z, Li E, Hou X. BcAS2 Regulates Leaf Adaxial Polarity Development in Non-Heading Chinese Cabbage by Directly Activating BcPHB Transcription. PLANTS (BASEL, SWITZERLAND) 2025; 14:1207. [PMID: 40284095 PMCID: PMC12030544 DOI: 10.3390/plants14081207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Leaves are the primary organs for plant photosynthesis, and their flat, symmetric morphology is crucial for plant growth and development. The LBD family transcription factor ASYMMETRIC LEAVES 2 (AS2) plays a central role in the establishment of leaf polarity. In this study, we cloned the BcAS2 gene from the non-heading Chinese cabbage cultivar "NHCC001" and successfully generated overexpression strains through genetic transformation. Phenotypic analysis revealed that overexpression of BcAS2 led to significant upward curling of leaves in non-heading Chinese cabbage. Additionally, we found that the expression of BcPHB, a gene associated with leaf adaxial polarity development, was significantly up-regulated in BcAS2-overexpressing plants compared to controls. This interaction was further confirmed through yeast one-hybridization (Y1H), dual-luciferase reporter assays, and electrophoretic mobility shift assay (EMSA), all of which demonstrated that BcAS2 directly binds to the GATA-motif site of the BcPHB promoter and promotes its transcription. Functional validation via overexpression and silencing of BcPHB confirmed its role in regulating adaxial polarity development in non-heading Chinese cabbage leaves. This study elucidates the molecular mechanism of the BcAS2-BcPHB pathway in regulating leaf polarity in non-heading Chinese cabbage, providing a theoretical foundation for morphological improvement breeding.
Collapse
Affiliation(s)
- Cheng Jiang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (C.J.); (Q.D.); (Y.H.); (Y.L.); (Z.G.); (E.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Qiang Ding
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (C.J.); (Q.D.); (Y.H.); (Y.L.); (Z.G.); (E.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Ying He
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (C.J.); (Q.D.); (Y.H.); (Y.L.); (Z.G.); (E.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Yiran Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (C.J.); (Q.D.); (Y.H.); (Y.L.); (Z.G.); (E.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Zhanyuan Gao
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (C.J.); (Q.D.); (Y.H.); (Y.L.); (Z.G.); (E.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Entong Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (C.J.); (Q.D.); (Y.H.); (Y.L.); (Z.G.); (E.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (C.J.); (Q.D.); (Y.H.); (Y.L.); (Z.G.); (E.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| |
Collapse
|
2
|
Yu M, Jin J, Li X, Liu Y, Su X, Caraballo-Ortiz MA, Zhang P, Yang Q, Qu R, Cairang Z, Gao X, Zheng Y. Selection and validation of reference genes for the normalization of RT-qPCR gene expression data in Rheum tanguticum (Polygonaceae) under various abiotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154435. [PMID: 39864355 DOI: 10.1016/j.jplph.2025.154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses. Ten candidate genes were selected based on prior studies of related species and transcriptomic data for R. tanguticum. Their expression stability was evaluated across three tissue types (leaf, stem, and root) under four abiotic stress treatments using a comprehensive suite of bioinformatics tools. Our findings revealed that RtEF1α was the most stable reference gene in salt- and drought-stressed roots and drought-stressed stems, while RtTUB was most stable in salt-stressed stems. RtSAND was identified as the most stable reference gene in salt-, drought-, heavy metal-, and hormone-stressed leaves. For heavy metal- and hormone-stressed roots and heavy metal-stressed stems, RtUBC demonstrated the highest stability, whereas RteIF6A was most stable in hormone-stressed stems. Furthermore, the utility of these reference genes was validated by assessing the expression pattern of the drought-related gene RtNAC. This study is the first report on selecting and validating reference genes of R. tanguticum under various stress conditions, which will benefit future investigations of the genomic mechanisms involved on stress resistance in this species.
Collapse
Affiliation(s)
- Mingjun Yu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Jiarui Jin
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Xiaoli Li
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Yuping Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
| | - Marcos A Caraballo-Ortiz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA; Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Penghui Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Qian Yang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Rongju Qu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Zhaxi Cairang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Xuanlin Gao
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Yinghui Zheng
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
3
|
Mierek-Adamska A, Tylman-Mojżeszek W, Pawełek A, Kulasek M, Dąbrowska GB. The Potential Role of Brassica napus Metallothioneins in Salt Stress and Interactions with Plant Growth-Promoting Bacteria. Genes (Basel) 2025; 16:166. [PMID: 40004495 PMCID: PMC11855018 DOI: 10.3390/genes16020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Plant metallothioneins (MTs) are low-molecular-weight proteins involved in heavy metal binding and response to stress conditions. This work aimed to analyse canola (Brassica napus L.) MTs (BnMT1-4) response to salinity and plant interaction with bacteria. METHODS (1) We tested germination and canola growth and development in the presence of sodium chloride and bacteria Serratia plymuthica; (2) We analysed phytohormones content using LC-MS/MS; (3) We identified in silico cis-regulatory elements in promoters of BnMT1-4 genes; and (4) we investigated BnMT1-4 genes' expression in B. napus. RESULTS Under saline conditions, canola germination and plant growth were notably inhibited, whereas inoculation of seeds with S. plymuthica significantly stimulated the analysed physiological traits of B. napus. The content of auxin, abscisic acid, jasmonates, gibberellins, and salicylic acid in B. napus was significantly affected by salinity and modulated by S. plymuthica presence. The promoter regions of the BnMT1-4 genes contain numerous regulatory elements controlled by light, hormones, and various stresses. Interestingly, the expression of BnMT1-3 genes was down-regulated under salt stress, while BnMT4 transcript levels increased strongly at the highest salt concentrations with and without S. plymuthica present. CONCLUSIONS The results show that BnMT genes are differently affected by salinity and bacteria S. plymuthica and significantly correlate with particular phytohormones content in canola tissues, confirming the diversified functions of MTs in plant responses to changing environment.
Collapse
Affiliation(s)
- Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland (A.P.); (M.K.); (G.B.D.)
| | | | | | | | | |
Collapse
|
4
|
Wu W, Yang H, Xing P, Zhu G, Han X, Xue M, Min G, Ding H, Wu G, Liu Z. Brassica rapa BrICE1 and BrICE2 Positively Regulate the Cold Tolerance via CBF and ROS Pathways, Balancing Growth and Defense in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2625. [PMID: 39339599 PMCID: PMC11435425 DOI: 10.3390/plants13182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Winter rapeseed (Brassica rapa) has a good chilling and freezing tolerance. inducer of CBF expression 1 (ICE1) plays a crucial role in cold signaling in plants; however, its role in Brassica rapa remains unclear. In this study, we identified 41 ICE1 homologous genes from six widely cultivated Brassica species. These genes exhibited high conservation, with evolutionary complexity between diploid and allotetraploid species. Cold stress induced ICE1 homolog expression, with differences between strongly and weakly cold-tolerant varieties. Two novel ICE1 paralogs, BrICE1 and BrICE2, were cloned from Brassica rapa Longyou 6. Subcellular localization assays showed that they localized to the nucleus, and low temperature did not affect their nuclear localization. The overexpression of BrICE1 and BrICE2 increased cold tolerance in transgenic Arabidopsis and enhanced reactive oxygen species' (ROS) scavenging ability. Furthermore, our data demonstrate that overexpression of BrICE1 and BrICE2 inhibited root growth in Arabidopsis, and low temperatures could induce the degradation of BrICE1 and BrICE2 via the 26S-proteasome pathway. In summary, ICE1 homologous genes exhibit complex evolutionary relationships in Brassica species and are involved in the C-repeat/DREB binding factor (CBF) pathway and ROS scavenging mechanism in response to cold stress; these regulating mechanisms might also be responsible for balancing the development and cold defense of Brassica rapa.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haobo Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guoting Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xueyan Han
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Mei Xue
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guotai Min
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Haijun Ding
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Sun H, Li C, Li S, Ma J, Li S, Li X, Gao C, Yang R, Ma N, Yang J, Yang P, He X, Hu T. Identification and validation of stable reference genes for RT-qPCR analyses of Kobresia littledalei seedlings. BMC PLANT BIOLOGY 2024; 24:389. [PMID: 38730341 PMCID: PMC11088182 DOI: 10.1186/s12870-024-04924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.
Collapse
Affiliation(s)
- Haoyang Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Chunping Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Siyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Jiaxin Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Shuo Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Xin Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Cai Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Nan Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Jing Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Xueqing He
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| |
Collapse
|
6
|
Yang X, Wang M, Zhou Q, Xu X, Li Y, Hou X, Xiao D, Liu T. BcABF1 Plays a Role in the Feedback Regulation of Abscisic Acid Signaling via the Direct Activation of BcPYL4 Expression in Pakchoi. Int J Mol Sci 2024; 25:3877. [PMID: 38612692 PMCID: PMC11011251 DOI: 10.3390/ijms25073877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Abscisic acid-responsive element-binding factor 1 (ABF1), a key transcription factor in the ABA signal transduction process, regulates the expression of downstream ABA-responsive genes and is involved in modulating plant responses to abiotic stress and developmental processes. However, there is currently limited research on the feedback regulation of ABF1 in ABA signaling. This study delves into the function of BcABF1 in Pakchoi. We observed a marked increase in BcABF1 expression in leaves upon ABA induction. The overexpression of BcABF1 not only spurred Arabidopsis growth but also augmented the levels of endogenous IAA. Furthermore, BcABF1 overexpression in Arabidopsis significantly decreased leaf water loss and enhanced the expression of genes associated with drought tolerance in the ABA pathway. Intriguingly, we found that BcABF1 can directly activate BcPYL4 expression, a critical receptor in the ABA pathway. Similar to BcABF1, the overexpression of BcPYL4 in Arabidopsis also reduces leaf water loss and promotes the expression of drought and other ABA-responsive genes. Finally, our findings suggested a novel feedback regulation mechanism within the ABA signaling pathway, wherein BcABF1 positively amplifies the ABA signal by directly binding to and activating the BcPYL4 promoter.
Collapse
Affiliation(s)
- Xiaoxue Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Meiyun Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Qian Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Xinfeng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Ying Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Xilin Hou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Dong Xiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Tongkun Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
- Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Shen Y, Wang G, Ran J, Li Y, Wang H, Ding Q, Li Y, Hou X. Regulation of the trade-off between cold stress and growth by glutathione S-transferase phi class 10 (BcGSTF10) in non-heading Chinese cabbage. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1887-1902. [PMID: 38079376 DOI: 10.1093/jxb/erad494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 03/28/2024]
Abstract
Cold stress is a serious threat to global crop production and food security, but plant cold resistance is accompanied by reductions in growth and yield. In this study, we determined that the novel gene BcGSTF10 in non-heading Chinese cabbage [NHCC; Brassica campestris (syn. Brassica rapa) ssp. chinensis] is implicated in resistance to cold stress. Biochemical and genetic analyses demonstrated that BcGSTF10 interacts with BcICE1 to induce C-REPEAT BINDING FACTOR (CBF) genes that enhance freezing tolerance in NHCC and in Arabidopsis. However, BcCBF2 represses BcGSTF10 and the latter promotes growth in NHCC and Arabidopsis. This dual function of BcGSTF10 indicates its pivotal role in balancing cold stress and growth, and this important understanding has the potential to inform the future development of strategies to breed crops that are both climate-resilient and high-yielding.
Collapse
Affiliation(s)
- Yunlou Shen
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangpeng Wang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajun Ran
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiran Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiyu Wang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Ding
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| |
Collapse
|
8
|
Guo W, Yang Y, Ma B, Wang W, Hu Z, Leng P. Selection and Validation of Reference Genes for Gene Expression Studies in Euonymus japonicus Based on RNA Sequencing. Genes (Basel) 2024; 15:131. [PMID: 38275612 PMCID: PMC10815735 DOI: 10.3390/genes15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Euonymus japonicus is one of the most low-temperature-tolerant evergreen broad-leaved tree species in the world and is widely used in urban greening. However, there are very few molecular biology studies on its low-temperature tolerance mechanism. So far, no researcher has selected and reported on its reference genes. In this study, 21 candidate reference genes (12 traditional housekeeping genes and 9 other genes) were initially selected based on gene expression and coefficient of variation (CV) through RNA-Seq (unpublished data), and qRT-PCR was used to detect the expression levels of candidate reference genes in three different groups of samples (leaves under different temperature stresses, leaves of plants at different growth stages, and different organs). After further evaluating the expression stability of these genes using geNorm, NormFinder, Bestkeeper, and RefFind, the results show that the traditional housekeeping gene eIF5A and the new reference gene RTNLB1 have good stability in the three different groups of samples, so they are reference genes with universality. In addition, we used eIF5A and RTNLB1 as reference genes to calibrate the expression pattern of the target gene EjMAH1, which confirmed this view. This article is the first to select and report on the reference gene of E. japonicus, laying the foundation for its low-temperature tolerance mechanism and other molecular biology research.
Collapse
Affiliation(s)
- Wei Guo
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Yihui Yang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Bo Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Wenbo Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Zenghui Hu
- Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, Beijing 102206, China
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| |
Collapse
|
9
|
Wang X, Shu X, Su X, Xiong Y, Xiong Y, Chen M, Tong Q, Ma X, Zhang J, Zhao J. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Centipedegrass under Different Abiotic Stress. Genes (Basel) 2023; 14:1874. [PMID: 37895223 PMCID: PMC10606319 DOI: 10.3390/genes14101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
As a C4 warm-season turfgrass, centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is known for its exceptional resilience to intensive maintenance practices. In this research, the most stably expressed reference genes in the leaves of centipedegrass under different stress treatments, including salt, cold, drought, aluminum (Al), and herbicide, were screened by the quantitative real-time PCR (RT-qPCR) technique. The stability of 13 candidate reference genes was evaluated by software GeNorm V3.4, NormFinder V20, BestKeeper V1.0, and ReFinder V1.0. The results of this experiment demonstrated that the expression of the UBC (ubiquitin-conjugating enzyme) remained the most stable under cold and Al stress conditions. On the other hand, the MD (malate dehydrogenase) gene exhibited the best performance in leaf tissues subjected to salt and drought stresses. Under herbicide stress, the expression level of the RIP (60S ribosomal protein L2) gene ranked the highest. The expression levels of abiotic stress-associated genes such as PIP1, PAL, COR413, ALMT9, and BAR were assessed to validate the reliability of the selected reference genes. This study provides valuable information and reference points for gene expression under abiotic stress conditions in centipedegrass.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xin Shu
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Minli Chen
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Qi Tong
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jianbo Zhang
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
10
|
Hu M, Xie M, Cui X, Huang J, Cheng X, Liu L, Yan S, Liu S, Tong C. Characterization and Potential Function Analysis of the SRS Gene Family in Brassica napus. Genes (Basel) 2023; 14:1421. [PMID: 37510325 PMCID: PMC10379590 DOI: 10.3390/genes14071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
SRS (SHI-related sequence) transcription factors play a crucial role in plant growth, development, and abiotic stress response. Although Brassica napus (B. napus) is one of the most important oil crops in the world, the role of SRS genes in B. napus (BnSRS) has not been well investigated. Therefore, we employed a bioinformatics approach to identify BnSRS genes from genomic data and investigated their characteristics, functions, and expression patterns, to gain a better understanding of how this gene family is involved in plant development and growth. The results revealed that there were 34 BnSRS gene family members in the genomic sequence of B. napus, unevenly distributed throughout the sequence. Based on the phylogenetic analysis, these BnSRS genes could be divided into four subgroups, with each group sharing comparable conserved motifs and gene structure. Analysis of the upstream promoter region showed that BnSRS genes may regulate hormone responses, biotic and abiotic stress response, growth, and development in B. napus. The protein-protein interaction analysis revealed the involvement of BnSRS genes in various biological processes and metabolic pathways. Our analysis of BnSRS gene expression showed that 23 BnSRS genes in the callus tissue exhibited a dominant expression pattern, suggesting their critical involvement in cell dedifferentiation, cell division, and tissue development. In addition, association analysis between genotype and agronomic traits revealed that BnSRS genes may be linked to some important agronomic traits in B. napus, suggesting that BnSRS genes were widely involved in the regulation of important agronomic traits (including C16.0, C18.0, C18.1, C18.2 C18.3, C20.1, C22.1, GLU, protein, TSW, and FFT). In this study, we predicted the evolutionary relationships and potential functions of BnSRS gene family members, providing a basis for the development of BnSRS gene functions which could facilitate targeted functional studies and genetic improvement for elite breeding in B. napus.
Collapse
Affiliation(s)
- Ming Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaobo Cui
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Lijiang Liu
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
11
|
Bian X, Cao Y, Zhi X, Ma N. Genome-Wide Identification and Analysis of the Plant Cysteine Oxidase (PCO) Gene Family in Brassica napus and Its Role in Abiotic Stress Response. Int J Mol Sci 2023; 24:11242. [PMID: 37511002 PMCID: PMC10379087 DOI: 10.3390/ijms241411242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plant Cysteine Oxidase (PCO) is a plant O2-sensing enzyme catalyzing the oxidation of cysteine to Cys-sulfinic acid at the N-termini of target proteins. To better understand the Brassica napus PCO gene family, PCO genes in B. napus and related species were analyzed. In this study, 20, 7 and 8 PCO genes were identified in Brassica napus, Brassica rapa and Brassica oleracea, respectively. According to phylogenetic analysis, the PCOs were divided into five groups: PCO1, PCO2, PCO3, PCO4 and PCO5. Gene organization and motif distribution analysis suggested that the PCO gene family was relatively conserved during evolution. According to the public expression data, PCO genes were expressed in different tissues at different developmental stages. Moreover, qRT-PCR data showed that most of the Bna/Bra/BoPCO5 members were expressed in leaves, roots, flowers and siliques, suggesting an important role in both vegetative and reproductive development. Expression of BnaPCO was induced by various abiotic stress, especially waterlogging stress, which was consistent with the result of cis-element analysis. In this study, the PCO gene family of Brassicaceae was analyzed for the first time, which contributes to a comprehensive understanding of the origin and evolution of PCO genes in Brassicaceae and the function of BnaPCO in abiotic stress responses.
Collapse
Affiliation(s)
- Xiaohua Bian
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yifan Cao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ximin Zhi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
12
|
Réthoré E, Ali N, Pluchon S, Hosseini SA. Silicon Enhances Brassica napus Tolerance to Boron Deficiency by the Remobilisation of Boron and by Changing the Expression of Boron Transporters. PLANTS (BASEL, SWITZERLAND) 2023; 12:2574. [PMID: 37447134 DOI: 10.3390/plants12132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Boron (B) is an essential micronutrient for plants, and its deficiency is a widespread nutritional disorder, particularly in high-demanding crops like Brassica napus. Over the past few decades, silicon (Si) has been shown to mitigate plant nutrient deficiencies of different macro- and micro-nutrients. However, the work on B and Si cross-talk has mostly been focused on the alleviation of B toxicity by Si application. In the present study, we investigated the effect of Si application on rapeseed plants grown hydroponically under long-term B deficiency (20 days at 0.1 µM B). In addition, a B-uptake labelling experiment was conducted, and the expression of the genes involved in B uptake were monitored between 2 and 15 days of B shortage. The results showed that Si significantly improved rapeseed plant growth under B deficiency by 34% and 49% in shoots and roots, respectively. It also increased the expression level of BnaNIP5;1 and BOR1;2c in both young leaves and roots. The uptake labelling experiment showed the remobilization of previously fixed 11B from old leaves to new tissues. This study provides additional evidence of the beneficial effects of Si under conditions lacking B by changing the expression of the BnaNIP5;1 gene and by remobilizing 11B to young tissues.
Collapse
Affiliation(s)
- Elise Réthoré
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Nusrat Ali
- Phys-Chem and Bio-Analytics R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint-Malo, France
| | - Sylvain Pluchon
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Seyed Abdollah Hosseini
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| |
Collapse
|
13
|
Lu L, Tang Y, Xu H, Qian Y, Tao J, Zhao D. Selection and verification of reliable internal reference genes in stem development of herbaceous peony ( Paeonia lactiflora Pall.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:773-782. [PMID: 37520813 PMCID: PMC10382430 DOI: 10.1007/s12298-023-01325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 08/01/2023]
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) has emerged in the cut flower market due to its beautiful appearance. The bending flower stems caused by a lack of mechanical strength is the main problem restricting the development of the cut P. lactiflora industry. So it is of great worth to reveal the basis of stem development changes in P. lactiflora to improve its cut flower quality. Quantitative research on gene expression characteristics can provide clues for understanding their biological functions, and the screening of relatively stable expression genes is a prerequisite for the quantitative study of gene expression characteristics. Thus, it is necessary to find appropriate genes during stem development so as to analyze the qRT‒PCR results. In this study, 10 genes were screened, and these genes expressed stably in stems of different stem strengths at three different developmental stages. Then, their expressions were evaluated by RefFinder, BestKeeper, NormFinder, and GeNorm programs. The results demonstrated that γ-tubulin (γ-TUB) was the most suitable gene, followed by α-tubulin (α-TUB) and β-D-glucosidase (β-GUS), whereas histone H3 (His) was the least suitable gene. Besides, the temporal and spatial expression characteristics of PlCOMT1, the key gene concerned with the synthesis of cell wall fillers in P. lactiflora, were also used to evaluate the suitability of genes. Consequently, γ-TUB and α-TUB are the two best combinations during stem development, and their combination can be used for the stem development of P. lactiflora. These findings will provide a reference for the selection of genes related to stem development and the study of molecular mechanisms related to stem development in P. lactiflora. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01325-5.
Collapse
Affiliation(s)
- Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yi Qian
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
14
|
Zhou Y, Meng F, Han K, Zhang K, Gao J, Chen F. Screening and validating of endogenous reference genes in Chlorella sp. TLD 6B under abiotic stress. Sci Rep 2023; 13:1555. [PMID: 36707665 PMCID: PMC9883494 DOI: 10.1038/s41598-023-28311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Chlorella sp. TLD 6B, a microalgae growing in the Taklamakan Desert, Xinjiang of China, is a good model material for studying the physiological and environmental adaptation mechanisms of plants in their arid habitats, as its adaptation to the harsh desert environment has led to its strong resistance. However, when using real-time quantitative polymerase chain reaction (RT-qPCR) to analyze the gene expression of this algae under abiotic stress, it is essential to find the suitable endogenous reference genes so to obtain reliable results. This study assessed the expression stability of 9 endogenous reference genes of Chlorella sp. TLD 6B under four abiotic stresses (drought, salt, cold and heat). These genes were selected based on the analysis results calculated by the three algorithmic procedures of geNorm, NormFinder, and BestKeeper, which were ranked by refinder. Our research showed that 18S and GTP under drought stress, 18S and IDH under salt stress, CYP and 18S under cold stress, GTP and IDH under heat stress were the most stable endogenous reference genes. Moreover, UBC and 18S were the most suitable endogenous reference gene combinations for all samples. In contrast, GAPDH and α-TUB were the two least stable endogenous reference genes in all experimental samples. Additionally, the selected genes have been verified to be durable and reliable by detecting POD and PXG3 genes using above endogenous reference genes. The identification of reliable endogenous reference genes guarantees more accurate RT-qPCR quantification for Chlorella sp. TLD 6B, facilitating functional genomics studies of deserts Chlorella as well as the mining of resistance genes.
Collapse
Affiliation(s)
- Yongshun Zhou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Fanze Meng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Kai Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Kaiyue Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jianfeng Gao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| | - Fulong Chen
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
15
|
Sun X, Feng D, Liu M, Qin R, Li Y, Lu Y, Zhang X, Wang Y, Shen S, Ma W, Zhao J. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biol 2022; 23:262. [PMID: 36536447 PMCID: PMC9762029 DOI: 10.1186/s13059-022-02834-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chinese cabbage (Brassica rapa ssp. pekinensis) experienced a whole-genome triplication event and thus has three subgenomes: least fractioned, medium fractioned, and most fractioned subgenome. Environmental changes affect leaf development, which in turn influence the yield. To improve the yield and resistance to different climate scenarios, a comprehensive understanding of leaf development is required including insights into the full diversity of cell types and transcriptional networks underlying their specificity. RESULTS Here, we generate the transcriptional landscape of Chinese cabbage leaf at single-cell resolution by performing single-cell RNA sequencing of 30,000 individual cells. We characterize seven major cell types with 19 transcriptionally distinct cell clusters based on the expression of the reported marker genes. We find that genes in the least fractioned subgenome are predominantly expressed compared with those in the medium and most fractioned subgenomes in different cell types. Moreover, we generate a single-cell transcriptional map of leaves in response to high temperature. We find that heat stress not only affects gene expression in a cell type-specific manner but also impacts subgenome dominance. CONCLUSIONS Our study highlights the transcriptional networks in different cell types and provides a better understanding of transcriptional regulation during leaf development and transcriptional response to heat stress in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Ruixin Qin
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Yan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
16
|
Wang H, Li Z, Ren H, Zhang C, Xiao D, Li Y, Hou X, Liu T. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [ Brassica campestris (syn. Brassica rapa) ssp. chinensis]. HORTICULTURE RESEARCH 2022; 9:uhac113. [PMID: 35836472 PMCID: PMC9273956 DOI: 10.1093/hr/uhac113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 06/05/2023]
Abstract
Salinity is a universal environmental stress that causes yield reduction in plants. WRKY33, which has been extensively studied in plant defense against necrotrophic pathogens, has recently been found to be important in salt-responsive pathways. However, the underlying molecular mechanisms controlling the involvement of WRKY33 in salt tolerance have not been fully characterized. Here, we explored the function of BcWRKY33A in non-heading Chinese cabbage (NHCC). Under salt stress, BcWRKY33A expression is significantly induced in roots. As a nuclear protein, BcWRKY33A has strong transcriptional activation activity. Overexpression of BcWRKY33A confers salt tolerance in Arabidopsis, whereas silencing of BcWRKY33A causes salt sensitivity in NHCC. Furthermore, BcHSFA4A, a protein that interacts with BcWRKY33A, could directly bind to the HSE motif within the promoters of BcZAT12 and BcHSP17.6A, which are involved in the plant response to salt stress. Finally, we found that BcWRKY33A could enhance the transcriptional activity of BcHSFA4A and affect its downstream genes (e.g. BcZAT12 and BcHSP17.6A), and co-overexpression of BcWRKY33A and BcHSFA4A could promote the expression of salt-related genes, suggesting that the regulatory interaction between BcWRKY33A and BcHSFA4A improves salt tolerance in plants. Overall, our results provide insight into the molecular framework of the BcWRKY33A-BcHSFA4A signaling pathway, which also aids in our understanding of the molecular mechanism of salt tolerance in plants.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibo Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Ma L, Qi W, Bai J, Li H, Fang Y, Xu J, Xu Y, Zeng X, Pu Y, Wang W, Liu L, Li X, Sun W, Wu J. Genome-Wide Identification and Analysis of the Ascorbate Peroxidase (APX) Gene Family of Winter Rapeseed (Brassica rapa L.) Under Abiotic Stress. Front Genet 2022; 12:753624. [PMID: 35126448 PMCID: PMC8814366 DOI: 10.3389/fgene.2021.753624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Winter Brassica rapa (B. rapa) is an important oilseed crop in northern China, but the mechanism of its cold resistance remains unclear. Ascorbate peroxidase (APX) plays important roles in the response of this plant to abiotic stress and in scavenging free radicals. In this study, the roles of APX proteins in the cold response and superoxide metabolism pathways in rapeseed species were investigated, and a comprehensive analysis of phylogeny, chromosome distribution, motif identification, sequence structure, gene duplication, and RNA-seq expression profiles in the APX gene family was conducted. Most BrAPX genes were specifically expressed under cold stress and behaved significantly differently in cold-tolerant and weakly cold-resistant varieties. Quantitative real-time-PCR (qRT-PCR) was also used to verify the differences in expression between these two varieties under cold, freezing, drought and heat stress. The expression of five BrAPX genes was significantly upregulated in growth cones at 3 h of cold stress, while their expression was significantly lower at 24 h than at 3 h. The expression of Bra015403 and Bra003918 was significantly higher in “Longyou-7” growth cones than in other treatments. Five BrAPXs (Bra035235, Bra003918, Bra033040, Bra017120, and Bra031934) were closely associated with abiotic stress responses in B. rapa. These candidate genes may play important roles in the response of B. rapa to low temperature stress and provide new information for the elucidation of the cold resistance mechanism in B. rapa.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Weiliang Qi
- College of Agriculture and Forestry, Longdong University, Qingyang, China
| | - Jing Bai
- Zhangye Academy of Agricultural Sciences, Zhangye, China
| | - Haiyun Li
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jia Xu
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yaozhao Xu
- College of Agronomy and Biotechnology, Hexi University, Zhangye, China
| | - Xiucun Zeng
- College of Agronomy and Biotechnology, Hexi University, Zhangye, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Wancang Sun, ; Junyan Wu,
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Wancang Sun, ; Junyan Wu,
| |
Collapse
|
18
|
Liu YP, Zhang Y, Liu F, Liu T, Chen JY, Fu G, Zheng CY, Su DD, Wang YN, Zhou HK, Su X, Aj H, Wang XM. Establishment of reference (housekeeping) genes via quantitative real-time PCR for investigation of the genomic basis of abiotic stress resistance in Psammochloa villosa (Poaceae). JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153575. [PMID: 34837885 DOI: 10.1016/j.jplph.2021.153575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Psammochloa villosa is a desert plant growing in Northwest China with considerable resistance to abiotic stress, including drought, cold, and salt. To facilitate future studies of stress resistance in Psammochloa villosa, we sought to establish a suite of reference (or housekeeping) genes for utilization within future gene expression studies. Specifically, we selected nine candidate genes based on prior studies and new transcriptomic data for P. villosa, and we evaluated their expression stability in three different tissues of P. villosa under different treatments simulating abiotic stress conditions using four different bioinformatics assessments. Our results showed that TIP41 (TIP41-like family protein) was the most stable reference gene in drought- and salt-stressed leaves and salt-stressed stems, ELF-1α (elongation factor 1-α) was the most stable in cold-stressed leaves and drought- and salt-stressed roots, ACT (actin) was the most stable in drought-stressed stems, TUA (α-tubulin) was the most stable in cold-stressed stems, and 18S rRNA (18S ribosomal RNA) was the most stable in cold-stressed roots. Additionally, we tested the utility of these candidate reference genes to detect the expression pattern of P5CS (Δ1-pyrroline-5-carboxylate synthetase), which is a drought-related gene. This study is the first report on selecting and validating reference genes of P. villosa under various stress conditions and will benefit future investigations of the genomic mechanisms of stress resistance in this ecologically important species.
Collapse
Affiliation(s)
- Yu Ping Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China.
| | - Yu Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Feng Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Tao Liu
- School of Geography, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Jin Yuan Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Gui Fu
- School of Geography, Qinghai Normal University, Xining, 810008, China
| | - Chang Yuan Zheng
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Dan Dan Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Ya Nan Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Hua Kun Zhou
- Key Laboratory of Cold Regions Restoration Ecology in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Harris Aj
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiu Mei Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
19
|
Velasco P, Rodríguez VM, Soengas P, Poveda J. Trichoderma hamatum Increases Productivity, Glucosinolate Content and Antioxidant Potential of Different Leafy Brassica Vegetables. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112449. [PMID: 34834812 PMCID: PMC8619120 DOI: 10.3390/plants10112449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 05/29/2023]
Abstract
Brassica crops include important vegetables known as "superfoods" due to the content of phytochemicals of great interest to human health, such as glucosinolates (GSLs) and antioxidant compounds. On the other hand, Trichoderma is a genus of filamentous fungi that includes several species described as biostimulants and/or biological control agents in agriculture. In a previous work, an endophytic strain of Trichoderma hamatum was isolated from kale roots (Brassica oleracea var. acephala), describing its ability to induce systemic resistance in its host plant. In the present work, some of the main leafy Brassica crops (kale, cabbage, leaf rape and turnip greens) have been root-inoculated with T. hamatum, having the aim to verify the possible capacity of the fungus as a biostimulant in productivity as well as the foliar content of GSLs and its antioxidant potential, in order to improve these "superfoods". The results reported, for the first time, an increase in the productivity of kale (55%), cabbage (36%) and turnip greens (46%) by T. hamatum root inoculation. Furthermore, fungal inoculation reported a significant increase in the content of total GSLs in cabbage and turnip greens, mainly of the GSLs sinigrin and gluconapin, respectively, along with an increase in their antioxidant capacity. Therefore, T. hamatum could be a good agricultural biostimulant in leafy Brassica crops, increasing the content of GSLs and antioxidant potential of great food and health interest.
Collapse
Affiliation(s)
- Pablo Velasco
- Misión Biológica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain; (P.V.); (V.M.R.); (P.S.)
| | | | - Pilar Soengas
- Misión Biológica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain; (P.V.); (V.M.R.); (P.S.)
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Campus Arrosadía, Universidad Pública de Navarra, 31006 Pamplona, Spain
| |
Collapse
|
20
|
Réthoré E, Jing L, Ali N, Yvin JC, Pluchon S, Hosseini SA. K Deprivation Modulates the Primary Metabolites and Increases Putrescine Concentration in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:681895. [PMID: 34484256 PMCID: PMC8409508 DOI: 10.3389/fpls.2021.681895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Potassium (K) plays a crucial role in plant growth and development and is involved in different physiological and biochemical functions in plants. Brassica napus needs higher amount of nutrients like nitrogen (N), K, phosphorus (P), sulfur (S), and boron (B) than cereal crops. Previous studies in B. napus are mainly focused on the role of N and S or combined deficiencies. Hence, little is known about the response of B. napus to K deficiency. Here, a physiological, biochemical, and molecular analysis led us to investigate the response of hydroponically grown B. napus plants to K deficiency. The results showed that B. napus was highly sensitive to the lack of K. The lower uptake and translocation of K induced BnaHAK5 expression and significantly declined the growth of B. napus after 14 days of K starvation. The lower availability of K was associated with a decrease in the concentration of both S and N and modulated the genes involved in their uptake and transport. In addition, the lack of K induced an increase in Ca2+ and Mg2+ concentration which led partially to the accumulation of positive charge. Moreover, a decrease in the level of arginine as a positively charged amino acid was observed which was correlated with a substantial increase in the polyamine, putrescine (Put). Furthermore, K deficiency induced the expression of BnaNCED3 as a key gene in abscisic acid (ABA) biosynthetic pathway which was associated with an increase in the levels of ABA. Our findings provided a better understanding of the response of B. napus to K starvation and will be useful for considering the importance of K nutrition in this crop.
Collapse
Affiliation(s)
- Elise Réthoré
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Lun Jing
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Nusrat Ali
- Plateformes Analytiques de Recherche, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| | - Seyed Abdollah Hosseini
- Laboratoire de Nutrition Végétale, Agro Innovation International—TIMAC AGRO, Saint-Malo, France
| |
Collapse
|