1
|
AOKI R, INUI Y, OKABE Y, SATO M, TAKEDA-KAMIYA N, TOYOOKA K, SAWADA K, MORITA H, GENOT B, MARUYAMA S, TOMO T, SONOIKE K, MATSUNAGA S. Incorporation of photosynthetically active algal chloroplasts in cultured mammalian cells towards photosynthesis in animals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:524-536. [PMID: 39477444 PMCID: PMC11635087 DOI: 10.2183/pjab.100.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 11/12/2024]
Abstract
Chloroplasts are photosynthetic organelles that evolved through the endosymbiosis between cyanobacteria-like symbionts and hosts. Many studies have attempted to isolate intact chloroplasts to analyze their morphological characteristics and photosynthetic activity. Although several studies introduced isolated chloroplasts into the cells of different species, their photosynthetic activities have not been confirmed. In this study, we isolated photosynthetically active chloroplasts from the primitive red alga Cyanidioschyzon merolae and incorporated them in cultured mammalian cells via co-cultivation. The incorporated chloroplasts retained their thylakoid structure in intracellular vesicles and were maintained in the cytoplasm, surrounded by the mitochondria near the nucleus. Moreover, the incorporated chloroplasts maintained electron transport activity of photosystem II in cultured mammalian cells for at least 2 days after the incorporation. Our top-down synthetic biology-based approach may serve as a foundation for creating artificially photosynthetic animal cells.
Collapse
Affiliation(s)
- Ryota AOKI
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yayoi INUI
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoji OKABE
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Mayuko SATO
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | | | - Kiminori TOYOOKA
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Koki SAWADA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hayato MORITA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Baptiste GENOT
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinichiro MARUYAMA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Tatsuya TOMO
- Graduate School of Science, Tokyo University of Science, Tokyo, Japan
| | - Kintake SONOIKE
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | - Sachihiro MATSUNAGA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Nishihara M, Hirabuchi A, Goto F, Watanabe A, Yoshida C, Washiashi R, Odashima M, Nemoto K. Efficient double-flowered gentian plant production using the CRISPR/Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:229-236. [PMID: 38420567 PMCID: PMC10901158 DOI: 10.5511/plantbiotechnology.23.0424a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 03/02/2024]
Abstract
Japanese cultivated gentians are highly valued ornamental flowers in Japan, but the flower shape is mostly limited to the single-flower type, unlike other flowers such as roses and carnations. To overcome this limitation, we used the CRISPR/Cas9 genome editing system to increase double-flowered genetic resources in gentians. Our approach targeted an AGAMOUS (AG) floral homeotic gene (AG1), which is responsible for the natural mutation that causes double flowers in gentians. We designed two targets in exon 1 of AG1 for genome editing and found that 9 of 12 herbicide-resistant shoots had biallelic mutations in the target regions of AG1. These nine lines all produced double flowers, with stamens converted into petaloid organs, similar to the natural mutant. We also analyzed the off-target effects of AG2, which is homologous to AG1, and found that such effects occurred in gentian genome editing but with low frequency. Furthermore, we successfully produced transgene-free genome-edited plants (null segregants) by crossing with wild-type pollen. F1 seedlings were subjected to PCR analysis to determine whether foreign DNA sequences, two partial regions of the CaMV35S promoter and Cas9 gene, were present in the genome. As a result, foreign genes were segregated at a 1 : 1 ratio, indicating successful null segregant production. Using PCR analysis, we confirmed that four representative null segregants did not contain transfer DNA. In summary, our study demonstrates that the CRISPR/Cas9 system can efficiently produce double-flowered gentians, and null segregants can also be obtained. These genome-edited plants are valuable genetic resources for future gentian breeding programs.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Akiko Hirabuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Fumina Goto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Aiko Watanabe
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Rie Washiashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Masashi Odashima
- Iwate Agricultural Research Center, 20-1 Narita, Kitakami, Iwate 024-0003, Japan
| | - Keiichirou Nemoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| |
Collapse
|
3
|
Nemoto K, Niinae T, Goto F, Sugiyama N, Watanabe A, Shimizu M, Shiratake K, Nishihara M. Calcium-dependent protein kinase 16 phosphorylates and activates the aquaporin PIP2;2 to regulate reversible flower opening in Gentiana scabra. THE PLANT CELL 2022; 34:2652-2670. [PMID: 35441691 PMCID: PMC9252468 DOI: 10.1093/plcell/koac120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/31/2022] [Indexed: 05/03/2023]
Abstract
Flower opening is important for successful pollination in many plant species, and some species repeatedly open and close their flowers. This is thought to be due to turgor pressure changes caused by water influx/efflux, which depends on osmotic oscillations in the cells. In some ornamental plants, water-transporting aquaporins, also known as plasma membrane intrinsic proteins (PIPs), may play an important role in flower opening. However, the molecular mechanism(s) involved in corolla movement are largely unknown. Gentian (Gentiana spp.) flowers undergo reversible movement in response to temperature and light stimuli; using gentian as a model, we showed that the Gentiana scabra aquaporins GsPIP2;2 and GsPIP2;7 regulate repeated flower opening. In particular, phosphorylation of a C-terminal serine residue of GsPIP2;2 is important for its transport activity and relates closely to the flower re-opening rate. Furthermore, GsPIP2;2 is phosphorylated and activated by the calcium (Ca2+)-dependent protein kinase GsCPK16, which is activated by elevated cytosolic Ca2+ levels in response to temperature and light stimuli. We propose that GsCPK16-dependent phosphorylation and activation of GsPIP2;2 regulate gentian flower re-opening, with stimulus-induced Ca2+ signals acting as triggers.
Collapse
Affiliation(s)
| | - Tomoya Niinae
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Fumina Goto
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Aiko Watanabe
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
4
|
Tasaki K, Watanabe A, Nemoto K, Takahashi S, Goto F, Sasaki N, Hikage T, Nishihara M. Identification of Candidate Genes Responsible for Flower Colour Intensity in Gentiana triflora. FRONTIERS IN PLANT SCIENCE 2022; 13:906879. [PMID: 35812931 PMCID: PMC9257217 DOI: 10.3389/fpls.2022.906879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Gentians cultivated in Japan (Gentiana triflora and Gentiana scabra and hybrids) have blue flowers, but flower colour intensity differs among cultivars. The molecular mechanism underlying the variation in flower colour intensity is unclear. Here, we produced F2 progeny derived from an F1 cross of intense- and faint-blue lines and attempted to identify the genes responsible for flower colour intensity using RNA-sequencing analyses. Comparative analysis of flower colour intensity and transcriptome data revealed differentially expressed genes (DEGs), although known flavonoid biosynthesis-related genes showed similar expression patterns. From quantitative RT-PCR (qRT-PCR) analysis, we identified two and four genes with significantly different expression levels in the intense- and faint-blue flower lines, respectively. We conducted further analyses on one of the DEGs, termed GtMIF1, which encodes a putative mini zinc-finger protein homolog, which was most differently expressed in faint-blue individuals. Functional analysis of GtMIF1 was performed by producing stable tobacco transformants. GtMIF1-overexpressing tobacco plants showed reduced flower colour intensity compared with untransformed control plants. DNA-marker analysis also confirmed that the GtMIF1 allele of the faint-blue flower line correlated well with faint flower colour in F2 progeny. These results suggest that GtMIF1 is one of the key genes involved in determining the flower colour intensity of gentian.
Collapse
Affiliation(s)
| | - Aiko Watanabe
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | | | - Fumina Goto
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | - Takashi Hikage
- Hachimantai City Floricultural Research and Development Center, Hachimantai, Japan
| | | |
Collapse
|
5
|
Takahashi S, Yoshida C, Takahashi H, Nishihara M. Isolation and Functional Analysis of EPHEMERAL1-LIKE ( EPH1L) Genes Involved in Flower Senescence in Cultivated Japanese Gentians. Int J Mol Sci 2022; 23:5608. [PMID: 35628413 PMCID: PMC9147615 DOI: 10.3390/ijms23105608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The elongation of flower longevity increases the commercial value of ornamental plants, and various genes have been identified as influencing flower senescence. Recently, EPHEMERAL1 (EPH1), encoding a NAC-type transcription factor, was identified in Japanese morning glory as a gene that promotes flower senescence. Here we attempted to identify an EPH1 homolog gene from cultivated Japanese gentians and characterized the same with regard to its flower senescence. Two EPH1-LIKE genes (EPH1La and EPH1Lb), considered as alleles, were isolated from a gentian cultivar (Gentiana scabra × G. triflora). Phylogenetic analyses revealed that EPH1L belongs to the NAM subfamily. The transcript levels of EPH1L increased along with its senescence in the field-grown flowers. Under dark-induced senescence conditions, the gentian-detached flowers showed the peak transcription level of EPH1L earlier than that of SAG12, a senescence marker gene, suggesting the involvement of EPH1L in flower senescence. To reveal the EPH1L function, we produced eph1l-knockout mutant lines using the CRISPR/Cas9 system. When the flower longevity was evaluated using the detached flowers as described above, improved longevity was recorded in all genome-edited lines, with delayed induction of SAG12 transcription. The degradation analysis of genomic DNA matched the elongation of flower longevity, cumulatively indicating the involvement of EPH1L in the regulation of flower senescence in gentians.
Collapse
Affiliation(s)
- Shigekazu Takahashi
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan; (S.T.); (C.Y.)
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan; (S.T.); (C.Y.)
| | - Hideyuki Takahashi
- Department of Agriculture, School of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan; (S.T.); (C.Y.)
| |
Collapse
|