1
|
Lu Z, Huang X, Shen Q, Chen E, Feng Y. Granzyme B Promotes Proliferation, Migration and EMT Process in Gastric Cancer. Biochem Genet 2024:10.1007/s10528-024-10841-2. [PMID: 38801462 DOI: 10.1007/s10528-024-10841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Granzyme B (GZMB), a critical member of the Gr gene family, is known to play an essential role in diverse physiological and pathological processes such as inflammation, acute and chronic inflammatory diseases, and cancer progression. In this study, we delve deeper into the role of GZMB within the context of gastric cancer (GC) to examine its expression patterns and functional implications. To accomplish this, we applied a combination of quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry techniques. These methodologies allowed us to accurately gauge GZMB expression levels in GC tissues and investigate their correlation with various clinical-pathological variables. Our secondary focus was to discern the regulatory influence of GZMB on GC cell biology. We used an array of assays including cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine, and migration assays. The effect of GZMB on gastric cancer progression was further validated through a subcutaneous xenograft mouse model. Our findings underscored that GZMB mRNA and protein levels were upregulated in GC tissues, a feature that showed a significant correlation with GC staging. We also discovered that a decrease in GZMB expression via knockdown experiments suppressed the proliferation and migration capabilities of GC cells. This effect was manifested through diminished expression levels of epithelial-mesenchymal transition (EMT) markers. In stark contrast, the overexpression of GZMB through plasmid transfection appeared to enhance the proliferation and migration abilities of GC cells. This was coupled with an upregulation in EMT expression. Our study concludes by emphasizing that GZMB promotes the growth, migration, and EMT processes in gastric cancer. In vitro, cell-based experiments and in vivo xenograft mouse models confirm this. Our findings provide a more comprehensive understanding of GZMB's role in gastric cancer pathogenesis, potentially opening doors for novel therapeutic strategies targeting this molecular pathway.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Gastrointestinal Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Xinkun Huang
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, 226361, China
| | - Qicheng Shen
- Department of Gastrointestinal Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Erlin Chen
- Department of Gastrointestinal Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Dovrolis N, Katifelis H, Grammatikaki S, Zakopoulou R, Bamias A, Karamouzis MV, Souliotis K, Gazouli M. Inflammation and Immunity Gene Expression Patterns and Machine Learning Approaches in Association with Response to Immune-Checkpoint Inhibitors-Based Treatments in Clear-Cell Renal Carcinoma. Cancers (Basel) 2023; 15:5637. [PMID: 38067341 PMCID: PMC10705515 DOI: 10.3390/cancers15235637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Despite the rapid evolution of targeted therapies, immunotherapy with checkpoint inhibition (ICI) as well as combination therapies, the cure of metastatic ccRCC (mccRCC) is infrequent, while the optimal use of the various novel agents has not been fully clarified. With the different treatment options, there is an essential need to identify biomarkers to predict therapeutic efficacy and thus optimize therapeutic approaches. This study seeks to explore the diversity in mRNA expression profiles of inflammation and immunity-related circulating genes for the development of biomarkers that could predict the effectiveness of immunotherapy-based treatments using ICIs for individuals with mccRCC. Gene mRNA expression was tested by the RT2 profiler PCR Array on a human cancer inflammation and immunity crosstalk kit and analyzed for differential gene expression along with a machine learning approach for sample classification. A number of mRNAs were found to be differentially expressed in mccRCC with a clinical benefit from treatment compared to those who progressed. Our results indicate that gene expression can classify these samples with high accuracy and specificity.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Stamatiki Grammatikaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, 22100 Corinth, Greece;
- Health Policy Institute, 15123 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| |
Collapse
|
3
|
Cancer secretome: finding out hidden messages in extracellular secretions. Clin Transl Oncol 2022; 25:1145-1155. [PMID: 36525229 DOI: 10.1007/s12094-022-03027-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Secretome analysis has gained popularity recently as a very well-designed proteomic approach that is being used to study various interactions and their effects on cellular activity. This analysis is especially helpful while studying the effects of the cells on their microenvironment, paracrine and autocrine processes, their therapeutic purposes, and as a new diagnostic perspective. Cancer is a condition rather than a specific type of disease and is still yet to be fully understood. Cancer secretome is a fairly new concept that is being implemented to examine the interactions taking place in the tumor microenvironment and can help to understand the phenomena like induction of tumorigenesis, stimulation of immune cells, etc. The secretome analysis helps to gain a different perspective on the existing knowledge on cancer and its effects. The recent advances in secretome studies are directed toward secreted components as drug targets, biomarkers, and companion tools for diagnostic and prognostic purposes in cancer. This review aims to find the interactors in different types of cancer and understand the existing unstructured secretome data and its application in prognosis, diagnosis, and in biomarker study.
Collapse
|
4
|
Lo UG, Chen YA, Khamis ZI, Kao WH, Hsieh JT, Sang QXA. Studies of hormonal regulation, phenotype plasticity, bone metastasis, and experimental therapeutics in androgen-repressed human prostate cancer (ARCaP) model. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:277-286. [PMID: 34541026 PMCID: PMC8446760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
First established by Dr. Leland W. K. Chung's lab, the androgen-repressed prostate cancer cell (ARCaP) line is derived from the ascitic fluid of a prostate cancer (PCa) patient with widely metastatic disease. Based on its unique characteristic of growth suppression in the presence of androgen, ARCaP cell line has contributed to the research of PCa disease progression toward therapy- and castration-resistant PCa (t-CRPC). It has been widely applied in studies exploring experimental therapeutic reagents including Genistein, Vorinostat and Silibinin. ARCaP cells have showed increased metastatic potential to the bone and soft tissues. In addition, accumulating studies using ARCaP model have demonstrated the epithelial-to-mesenchymal transitional plasticity of PCa using epithelial-like ARCaPE line treated in vitro with growth factors derived from bone microenvironment. The resulting mesenchymal-like ARCaPM sub-clone derived from bone-metastasized tumor has high expression of several factors correlated with cancer metastasis, such as N-Cadherin, Vimentin, MCM3, Granzyme B, β2-microglobulin and RANKL. In particular, the increased secretion of RANKL in ARCaPM further facilitates its capacity of inducing osteoclastogenesis at the bone microenvironment, leading to bone resorption and tumor colonization. Meanwhile, sphingosine kinase 1 (SphK1) acts as a key molecule driver in the neuroendocrine differentiation (NED) of ARCaP sublines, suggesting the unique facet of ARCaP cells for insightful studies in more malignant neuroendocrine prostate cancer (NEPC). Overall, the establishment of ARCaP line has provided a valuable model to explore the mechanisms underlying PCa progression toward metastatic t-CRPC. In this review, we will focus on the contribution of ARCaP model in PCa research covering hormone receptor activity, skeletal metastasis, plasticity of epithelial-to-mesenchymal transition (EMT) and application of therapeutic strategies.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Zahraa I Khamis
- Department of Chemistry & Biochemistry and Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Faculty of Sciences-I, Lebanese UniversityBeirut 999095, Lebanon
| | - Wei-Hsiang Kao
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry & Biochemistry and Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL 32306, USA
| |
Collapse
|
5
|
Affiliation(s)
- Huiling Wang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yong Huang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Jian He
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Liping Zhong
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yongxiang Zhao
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| |
Collapse
|