1
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Asbell PA, Sanfilippo CM, DeCory HH. Antibiotic resistance of bacterial pathogens isolated from the conjunctiva in the Antibiotic Resistance Monitoring in Ocular micRoorganisms (ARMOR) surveillance study (2009-2021). Diagn Microbiol Infect Dis 2024; 108:116069. [PMID: 37918187 DOI: 10.1016/j.diagmicrobio.2023.116069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 11/04/2023]
Abstract
Antibiotic resistance in bacterial ocular infections is of significant clinical concern and may affect treatment outcomes. We report on in vitro antibiotic susceptibility rates and trends among conjunctival-sourced isolates collected in the Antibiotic Resistance Monitoring in Ocular micRoorganisms (ARMOR) surveillance study. A total of 2214 conjunctival isolates (918 Staphylococcus aureus, 589 coagulase-negative staphylococci [CoNS], 194 Streptococcus pneumoniae, 171 Pseudomonas aeruginosa, and 342 Haemophilus influenzae) obtained between 2009-2021 were analyzed. Staphylococci were commonly resistant to azithromycin (≥54.8%) and oxacillin (≥29.3%). Resistance among S. pneumoniae isolates was notable for azithromycin (34.0%) and penicillin (28.9%), while P. aeruginosa and H. influenzae isolates were highly susceptible to most tested antibiotics. Methicillin-resistant staphylococci demonstrated greater concurrent resistance to other antibiotics than methicillin-susceptible isolates and exhibited high rates of multidrug resistance (≥74.0%). Among staphylococci, antibiotic resistance increased with patient age, and there were small decreases in resistance to several drugs over the 13-year period. These findings indicate that resistance to antibiotics routinely used in ophthalmic practice remains high among conjunctival isolates.
Collapse
Affiliation(s)
- Penny A Asbell
- University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | |
Collapse
|
3
|
Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023; 15:pharmaceutics15030804. [PMID: 36986665 PMCID: PMC10056716 DOI: 10.3390/pharmaceutics15030804] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antibacterial fluoroquinolones (FQs) are frequently used in treating infections. However, the value of FQs is debatable due to their association with severe adverse effects (AEs). The Food and Drug Administration (FDA) issued safety warnings concerning their side-effects in 2008, followed by the European Medicine Agency (EMA) and regulatory authorities from other countries. Severe AEs associated with some FQs have been reported, leading to their withdrawal from the market. New systemic FQs have been recently approved. The FDA and EMA approved delafloxacin. Additionally, lascufloxacin, levonadifloxacin, nemonoxacin, sitafloxacin, and zabofloxacin were approved in their origin countries. The relevant AEs of FQs and their mechanisms of occurrence have been approached. New systemic FQs present potent antibacterial activity against many resistant bacteria (including resistance to FQs). Generally, in clinical studies, the new FQs were well-tolerated with mild or moderate AEs. All the new FQs approved in the origin countries require more clinical studies to meet FDA or EMA requirements. Post-marketing surveillance will confirm or infirm the known safety profile of these new antibacterial drugs. The main AEs of the FQs class were addressed, highlighting the existing data for the recently approved ones. In addition, the general management of AEs when they occur and the rational use and caution of modern FQs were outlined.
Collapse
|
4
|
Herbert R, Caddick M, Somerville T, McLean K, Herwitker S, Neal T, Czanner G, Tuft S, Kaye SB. Potential new fluoroquinolone treatments for suspected bacterial keratitis. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001002. [PMID: 36161851 PMCID: PMC9297210 DOI: 10.1136/bmjophth-2022-001002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/05/2022] [Indexed: 11/12/2022] Open
Abstract
Topical fluoroquinolones (FQs) are an established treatment for suspected microbial keratitis. An increased FQ resistance in some classes of bacterial pathogens is a concern. Some recently developed FQs have an extended spectrum of activity, making them a suitable alternative for topical ophthalmic use. For example, the new generation FQs, avarofloxacin, delafloxacin, finafloxacin, lascufloxacin, nadifloxacin, levonadifloxacin, nemonoxacin and zabofloxacin have good activity against the common ophthalmic pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae and several of the Enterobacteriaceae. However, because there are no published ophthalmic break-point concentrations, the susceptibility of an isolated micro-organism to a topical FQ is extrapolated from systemic break-point data and wild type susceptibility. The purpose of this review is to compare the pharmacokinetics and pharmacodynamics of the FQs licensed for topical ophthalmic use with the same parameters for new generation FQs. We performed a literature review of the FQs approved for topical treatment and the new generation FQs licensed to treat systemic infections. We then compared the minimum inhibitory concentrations (MIC) of bacterial isolates and the published concentrations that FQs achieved in the cornea and aqueous. We also considered the potential suitability of new generation FQs for topical use based on their medicinal properties. Notably, we found significant variation in the reported corneal and aqueous FQ concentrations so that reliance on the reported mean concentration may not be appropriate, and the first quartile concentration may be more clinically relevant. The provision of the MIC for the microorganism together with the achieved lower (first) quartile concentration of a FQ in the cornea could inform management decisions such as whether to continue with the prescribed antimicrobial, increase the frequency of application, use a combination of antimicrobials or change treatment.
Collapse
Affiliation(s)
- Rose Herbert
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Mary Caddick
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Tobi Somerville
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Keri McLean
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | | | - Timothy Neal
- Department of Microbiology, Royal Liverpool University Hospital, Liverpool, UK
| | - Gabriela Czanner
- Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Stephen Tuft
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Stephen B Kaye
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Blondeau JM, Proskin HM, Sanfilippo CM, DeCory HH. Characterization of Polybacterial versus Monobacterial Conjunctivitis Infections in Pediatric Subjects Across Multiple Studies and Microbiological Outcomes with Besifloxacin Ophthalmic Suspension 0.6. Clin Ophthalmol 2021; 15:4419-4430. [PMID: 34785887 PMCID: PMC8591116 DOI: 10.2147/opth.s335197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The choice of empiric therapy for bacterial conjunctivitis should be guided by an awareness of typical causative pathogen distributions. Bacterial conjunctivitis can be polybacterial, although pediatric-specific data are lacking. Methods This was a post-hoc analysis of data in pediatric subjects (1–17 years) from five bacterial conjunctivitis trials evaluating besifloxacin ophthalmic solution 0.6%. Results Of the 730 pediatric subjects with culture-confirmed conjunctivitis, nearly one-fourth (23.6%) had polybacterial infections and three-fourths (76.4%) had monobacterial infections at baseline. In both polybacterial and monobacterial infections, the most prevalent organisms were Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, and Streptococcus mitis/S. mitis group. In polybacterial versus monobacterial infections, S. mitis/S. mitis group (8.7% vs 4.3%; P=0.032) and Moraxella catarrhalis (4.7% vs 0.5%; P<0.001) were identified more frequently, whereas S. pneumoniae (14.0% vs 28.1%; P<0.001) was identified less frequently, as the dominant infecting species. MICs for individual species were similar for tested antibiotics regardless of polybacterial or monobacterial infection, except Staphylococcus epidermidis for which fluoroquinolone MICs were ≥3 dilutions higher for isolates of this species sourced from polybacterial compared to monobacterial infections. Treatment with besifloxacin resulted in microbial eradication in 79.1% of polybacterial and 92.3% of monobacterial infections (P≤0.005 vs vehicle). Discussion One in four pediatric bacterial conjunctivitis infections is polybacterial, highlighting the need for a broad-spectrum antibiotic when choosing empiric therapy.
Collapse
Affiliation(s)
- Joseph M Blondeau
- Clinical Microbiology, Royal University Hospital, Saskatoon, SK, Canada
| | | | | | - Heleen H DeCory
- Pharmaceutical Medical Affairs, Bausch + Lomb, Rochester, NY, USA
| |
Collapse
|
6
|
Rusu A, Lungu IA, Moldovan OL, Tanase C, Hancu G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones-Shaping the Fifth Generation. Pharmaceutics 2021; 13:pharmaceutics13081289. [PMID: 34452252 PMCID: PMC8399897 DOI: 10.3390/pharmaceutics13081289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
The evolution of the class of antibacterial quinolones includes the introduction in therapy of highly successful compounds. Although many representatives were withdrawn due to severe adverse reactions, a few representatives have proven their therapeutical value over time. The classification of antibacterial quinolones into generations is a valuable tool for physicians, pharmacists, and researchers. In addition, the transition from one generation to another has brought new representatives with improved properties. In the last two decades, several representatives of antibacterial quinolones received approval for therapy. This review sets out to chronologically outline the group of approved antibacterial quinolones since 2000. Special attention is given to eight representatives: besifloxacin, delafoxacin, finafloxacin, lascufloxacin, nadifloxacin and levonadifloxacin, nemonoxacin, and zabofloxacin. These compounds have been characterized regarding physicochemical properties, formulations, antibacterial activity spectrum and advantageous structural characteristics related to antibacterial efficiency. At present these new compounds (with the exception of nadifloxacin) are reported differently, most often in the fourth generation and less frequently in a new generation (the fifth). Although these new compounds' mechanism does not contain essential new elements, the question of shaping a new generation (the fifth) arises, based on higher potency and broad spectrum of activity, including resistant bacterial strains. The functional groups that ensured the biological activity, good pharmacokinetic properties and a safety profile were highlighted. In addition, these new representatives have a low risk of determining bacterial resistance. Several positive aspects are added to the fourth fluoroquinolones generation, characteristics that can be the basis of the fifth generation. Antibacterial quinolones class continues to acquire new compounds with antibacterial potential, among other effects. Numerous derivatives, hybrids or conjugates are currently in various stages of research.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| | - Ioana-Andreea Lungu
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Octavia-Laura Moldovan
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-744-215-543
| | - Gabriel Hancu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| |
Collapse
|
7
|
Jasińska E, Bogut A, Magryś A, Olender A. Evaluation of the role of staphylococci in the pathomechanism of conjunctivitis. Int Ophthalmol 2021; 41:2585-2600. [PMID: 33778922 PMCID: PMC8238708 DOI: 10.1007/s10792-021-01818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 11/27/2022]
Abstract
Purpose Determination of the association between ica genes and phenotypic biofilm formation in staphylococcal isolates involved in conjunctivitis, their antibiotic resistance as well as detection of selected virulence characteristics: adhesion to epithelial cells and in vitro cytotoxicity. Methods The study included 26 Staphylococcus aureus (SA) and 26 Staphylococcus epidermidis (SE) isolates. The presence of icaAD genes and ica operon was determined by the PCR assay. Phenotypic biofilm formation was verified using the microtitre plate assay. Antibiotic resistance was performed using the disc diffusion method. Staphylococcal ability to attach to host cells was assessed by flow cytometry. Cytotoxicity on epithelial cells was evaluated by LDH assay. Results The ica genes were detected in 26.9% of SE and in 42.3% of SA isolates. Only 15.3% of isolates (SE) were positive for both the icaAD and the ica operon. Phenotypically, 19.2% of SE isolates were strong biofilm producers, among which three were both icaAD- and ica operon-positive. About 26.9% of SA isolates were strong biofilm producers. Methicillin resistance (MR) was detected in 34.6% of SE and 26.9% of SA isolates. About 75% of MR isolates were multidrug resistant. SA isolates adhered to host cells more extensively than SE. SA isolates released higher level of LDH than SE. Conclusions Adherence abilities were commonly observed in staphylococci associated with conjunctivitis. However, low prevalence of isolates positive for a complete and functional ica locus and low prevalence of strong biofilm producers was detected. SA adhered to a greater extent to eukaryotic cells than SE and were more cytotoxic.
Collapse
Affiliation(s)
- Ewa Jasińska
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland.
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|