1
|
Luo J, Gao J, Song H, Mo Z, Hong B, Zhu L, Song W, Qian G, Li C. Low temperature alleviated the adverse effects of simulated transport stress on the intestinal health in Chinese soft-shelled turtle Pelodiscus sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109936. [PMID: 39357630 DOI: 10.1016/j.fsi.2024.109936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Transport stress always poses a threat to aquatic animals. Transportation under low temperatures was often used to relieve transport stress in practical production of Chinese soft-shelled turtle Pelodiscus sinensis, but their effect on the turtle's intestinal barrier remains unclear. In this study, P. sinensis (initial weight 200 ± 20 g) were exposed to simulated transport stress for 12 h at control (30 °C) and low (20 °C) temperature, and then recovery for 24 h, and each treatment had 4 replicates with each replicate containing 4 turtles. The results showed that transportation induced obvious morphological and histological damages in intestinal villus, with a down-regulated expression of the tight junction related genes. Besides turtles in transport group showed an oxidative stress in intestine, which stimulated a physiological detoxification response together with apoptosis. Low temperature transport plays a mitigative effect on the transport stress of turtle intestine via relieved stress response. Specifically, the intestinal villus/crypt (V/C) ratio and the expression of tight junction genes in the low-temperature group were significantly higher compared to the control temperature group, while stress response parameters such as intestinal cortisol levels and hsp expression were significantly lower in the low-temperature group. Additionally, low temperature alleviated oxidative damage and apoptosis caused by transport stress relative to the control temperature group. However, the protective effect of low temperature on P. sinensis intestine was limited, especially after the temperature recovery stage. Overall, the findings of the present study demonstrated that transport stress would induce the disruption of intestinal integrity and oxidative damage, also activated the mucosal immunity and antioxidant enzyme system response of turtles. It was also suggested that low temperature could alleviate the adverse effects of transport stress on intestinal integrity through modulation of oxidative status and apoptosis, whereas much less impact after temperature recovery.
Collapse
Affiliation(s)
- Jiaxiang Luo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jintao Gao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Haoran Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhiyin Mo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Binquan Hong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Leyan Zhu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
2
|
Zhang L, Luo X, Tang R, Wu Y, Liang Z, Liu J, Pi J, Zhang H. MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks. Animals (Basel) 2024; 14:1037. [PMID: 38612276 PMCID: PMC11010895 DOI: 10.3390/ani14071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Under caged stress conditions, severe disruptions in duck intestinal barrier function, which adversely affect economic performance, have been observed. MiRNAs play a crucial role in cellular processes, but the mechanisms underlying their involvement in repairing oxidative stress-induced damage to duck intestinal barriers have not been elucidated. We performed miRNA-seq and protein tandem mass tagging (TMT) sequencing and identified differentially expressed miRNAs and proteins in oxidative stress-treated ducks. Dual-luciferase reporter vector experiments, RT-qPCR, and Western blotting revealed the regulatory role of apla-miR-106a-5p/MAP3K2 in intestinal barrier damage repair. The results showed that oxidative stress led to shortened villi and deepened crypts, impairing intestinal immune function. Significant downregulation of apla-miR-106a-5p was revealed by miRNA-seq, and the inhibition of its expression not only enhanced cell viability but also improved intestinal barrier function. TMT protein sequencing revealed MAP3K2 upregulation in caged-stressed duck intestines, and software analysis confirmed MAP3K2 as the target gene of apla-miR-106a-5p. Dual-fluorescence reporter gene experiments demonstrated direct targeting of MAP3K2 by apla-miR-106a-5p. RT-qPCR showed no effect on MAP3K2 expression, while Western blot analysis indicated that MAP3K2 protein expression was suppressed. In summary, apla-miR-106a-5p targets MAP3K2, regulating gene expression at the transcriptional level and facilitating effective repair of intestinal barrier damage. This discovery provides new insights into the molecular mechanisms of physiological damage in ducks under caged stress, offering valuable guidance for related research.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiang Luo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Rui Tang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Yan Wu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Zhenhua Liang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Jinsong Pi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Hao Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| |
Collapse
|
3
|
Li R, Chen X, Li X, Huang G, Lu C, Wen Z, Chen Z, Lai Y. A four-miRNA signature in serum as a biomarker for bladder cancer diagnosis. Am J Transl Res 2022; 14:4606-4616. [PMID: 35958461 PMCID: PMC9360833 DOI: pmid/35958461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Urinary bladder cancer (BCa) is globally the 10th most frequent cancer. As a novel diagnostic tool, miRNA in serum screening is non-invasive. This project aimed to determine particular serum miRNAs as novel biomarkers for diagnosing urinary BCa. METHODS We designed a three-phase study with 122 healthy controls (HCs) and 132 BCa patients. The 30 miRNAs' expressions in serum from HCs and BCa patients were detected during the screening phase. The miRNAs with the most dysregulation were tested in the training (HCs vs. BCa, 30 each) and validation (80 HCs vs. 82 BCa) phase further. The diagnostic ability of these candidate miRNAs was estimated by the receiver operating characteristic (ROC) curves as well as the area under the ROC curve (AUC). The miRNAs' target genes and their annotations to functions were predicted utilizing bioinformatic assays. RESULTS Six serum miRNAs (miR-124-3p, miR-182-5p, miR-1-3p, miR-196a-5p, miR-23b-3p and miR-34a-5p) had significantly different expression between BCa patients and HCs in the training and validation phase. The four-microRNA panel improved the diagnostic value, with AUC =0.985. The result of bioinformatic analysis showed that these miRNAs' target genes in the panel may be related to the MAPK signaling pathway in bladder cancer. CONCLUSIONS Our study identified a four-miRNA panel that is a non-invasive new biomarker for diagnosing BCa.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Zebo Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|