1
|
Lin CM, Chen HH, Lung CW, Chen HJ. Antiviral and Immunomodulatory Activities of Clinacanthus nutans (Burm. f.) Lindau. Int J Mol Sci 2023; 24:10789. [PMID: 37445964 PMCID: PMC10342181 DOI: 10.3390/ijms241310789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Clinacanthus nutans (Burm. f.) Lindau has been used as a traditional herbal medicine for treating snake bites, scalds, burns, and viral and bacterial infections. It has been attracting an increasing amount of attention because of its biological activities, including its antidiabetic, antioxidant, antibacterial, anticancer, anti-inflammatory, antiviral, and immunoregulatory activities. Here, we conducted a panoramic survey of the literature regarding the immunoregulatory, anti-inflammatory, and antiviral activities of C. nutans. We discovered that C. nutans extracts have virucidal activities against herpes simplex virus types 1 and 2, varicella-zoster virus, cyprinid herpesvirus 3, porcine reproductive and respiratory syndrome virus, mosquito-borne chikungunya virus, and potentially SARS-CoV-2; such activities likely result from C. nutans interfering with the entry, penetration, infection, and replication of viruses. We also reviewed the phytochemicals in C. nutans extracts that exhibit anti-inflammatory and immunoregulatory activities. This updated review of the antiviral, anti-inflammatory, and immunoregulatory activities of C. nutans may guide future agricultural practices and reveal clinical applications of C. nutans.
Collapse
Affiliation(s)
- Chung-Ming Lin
- Department of Biotechnology, School of Health Technology, Ming Chuan University, Taoyuan 33348, Taiwan;
| | - Hsin-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, Taichung 413305, Taiwan;
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Ng KS, Tan SA, Bok CY, Loh KE, Ismail IS, Yue CS, Loke CF. Metabolomic Approach for Rapid Identification of Antioxidants in Clinacanthus nutans Leaves with Liver Protective Potential. Molecules 2022; 27:molecules27123650. [PMID: 35744776 PMCID: PMC9230150 DOI: 10.3390/molecules27123650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the potential antioxidative compounds from the C. nutans leaves (CNL) and stems (CNS). Chemical- and cell-based antioxidative assays were utilized to evaluate the bioactivities of CNS and CNL. The NMR metabolomics approach assisted in the identification of contributing phytocompounds. Based on DPPH and ABTS radical scavenging activities, CNL demonstrated stronger radical scavenging potential as compared to CNS. The leaf extract also recorded slightly higher reducing power properties. A HepG2 cell model system was used to investigate the ROS reduction potential of these extracts. It was shown that cells treated with CNL and CNS reduced innate ROS levels as compared to untreated controls. Interestingly, cells pre-treated with both extracts were also able to decrease ROS levels in cells induced with oxidative stress. CNL was again the better antioxidant. According to multivariate data analysis of the 1H NMR results, the main metabolites postulated to contribute to the antioxidant and hepatoprotective abilities of leaves were clinacoside B, clinacoside C and isoschaftoside, which warrants further investigation.
Collapse
Affiliation(s)
- Kai Song Ng
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Yin Bok
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Khye Er Loh
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Intan Safinar Ismail
- Natural Medicine and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Chen Son Yue
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Fung Loke
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| |
Collapse
|
3
|
Ong WY, Herr DR, Sun GY, Lin TN. Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans. Molecules 2022; 27:molecules27113607. [PMID: 35684542 PMCID: PMC9182488 DOI: 10.3390/molecules27113607] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore 119260, Singapore
- Correspondence:
| | - Deron R. Herr
- Department of Pharmacology, National University of Singapore, Singapore 119260, Singapore;
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
4
|
Zhao J, Wang M, Saroja SG, Khan IA. NMR technique and methodology in botanical health product analysis and quality control. J Pharm Biomed Anal 2022; 207:114376. [PMID: 34656935 DOI: 10.1016/j.jpba.2021.114376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Botanicals have played an important role in maintaining human health and well-being throughout history. During the past few decades in particular, the use of botanical health products has gained more popularity. Whereas, quality, safety and efficacy concerns have continuously been critical issues due to the intrinsic chemical complexity of botanicals. Chemical analytical technologies play an imperative role in addressing these issues. Nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful and useful tool for the investigation of botanical health products. In this review, NMR techniques and methodologies that have been successfully applied to the research and development of botanical health products in all stages, from plants to products, are discussed and summarized. Furthermore, applications of NMR together with other analytical techniques in a variety of domains of botanical health products investigation, such as plant species differentiation, adulteration detection, and bio-activity evaluation, are discussed and illustrated with typical examples. This article provides an overview of the potential uses of NMR techniques and methodologies in an attempt to further promote their recognition and utilization in the field of botanical health products analysis and quality control.
Collapse
Affiliation(s)
- Jianping Zhao
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS 38677, USA
| | - Seethapathy G Saroja
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
5
|
Ahmad Azam A, Ismail IS, Shaikh MF, Abas F, Shaari K. Multi-Platform Metabolomics Analyses Revealed the Complexity of Serum Metabolites in LPS-Induced Neuroinflammed Rats Treated with Clinacanthus nutans Aqueous Extract. Front Pharmacol 2021; 12:629561. [PMID: 34177565 PMCID: PMC8220158 DOI: 10.3389/fphar.2021.629561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The use of metabolomics as a comprehensive tool in the analysis of metabolic profiles in disease progression and therapeutic intervention is rapidly advancing. Yet, a single analytical platform could not be applied to cover the entire spectrum of a biological sample’s metabolome. In the present paper, multi-platform metabolomics approaches were explored to determine the diverse rat sera metabolites extracted from intracerebroventricular lipopolysaccharides (LPS)-induced neuroinflammed rats treated with oral therapeutic interventions of positive drug (dextromethorphan, 5 mg/kg BW); with Clinacanthus nutans (CN) aqueous extract (CNE, 500 mg/kg BW); and with phosphate buffer saline (PBS) as the control group for 14 days. Analyzed by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) techniques, this study depicted the potential of metabolites associated with neuroinflammation and verified by MetDisease. The key observations in the perturbed metabolic pathways that showed ameliorative effects were linked to the class of amino acid and peptide metabolism involving valine, leucine, and isoleucine biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Lipid metabolism of arachidonic acid metabolism, glycerophospholipid metabolism, terpenoid backbone biosynthesis, and glycosphingolipid metabolism were also affected. Current findings suggested that the putative biomarkers, especially lysophosphatidic acid (LPA) and 5-diphosphomevalonic acid from glycerophospholipid and squalene/terpenoid and cholesterol biosynthesis, respectively, showed the ameliorative effects of the drug and CN treatments by controlling cell differentiation and proliferation. Our study proved that the complex and dynamic sera profiling affected during the CN treatment was greatly influenced by the analytical platform selection as integration between the two data yielded a more holistic summary of the metabolite pattern changes. Hence, an evidence-based herb, such as CN, can be used for novel diagnostic tools in the quest for ethnopharmacological studies.
Collapse
Affiliation(s)
- Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|