1
|
da Silva APB, Daniel MHB, Ferreira VDP, Chaves VM, de Oliveira JAF, Cabral AR, Magalhães TDB, Connerton PJ, Guimarães LNDA, de Moraes C, de Sousa OMF. [Evaluation of the system for Health Surveillance of Populations Exposed to Chemical Substances, Brazil, 2011-2021Evaluación del sistema de Vigilancia de la Salud de la Población Expuesta a Sustancias Químicas, Brasil, 2011-2021]. Rev Panam Salud Publica 2025; 49:e6. [PMID: 39936097 PMCID: PMC11812480 DOI: 10.26633/rpsp.2025.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/22/2024] [Indexed: 02/13/2025] Open
Abstract
Objective To evaluate the system for Health Surveillance of Populations Exposed to Chemical Substances (Vigipeq) in Brazil from 2011 to 2021. Methods Qualitative attributes (simplicity; acceptability, or engagement of individuals and institutions in surveillance; flexibility; and utility, or achievement of system objectives) were assessed using a semi-structured and anonymous questionnaire completed by representatives of environmental health surveillance agencies in capital cities. Quantitative attributes, including sensitivity (case detection), representativeness (generation of accurate information about events in terms of time, place, and person), and positive predictive value (PPV, true events of contaminated areas and exposed populations), were derived from the Health Surveillance Information System for Populations Exposed to Contaminated Soil. Data on exogenous intoxications were sourced from the Brazilian Notifiable Diseases Information System. Results Between 2011 and 2021, 16 029 cases of exogenous intoxication and 17 753 contaminated or potentially contaminated areas were recorded in Brazil. According to the questionnaire responses, Vigipeq was considered complex, inflexible, and had low acceptability. However, its sensitivity to detect exposures was high. The PPVs for identifying contaminated areas as well as exposed and potentially exposed populations were low. The system demonstrated utility in achieving its objectives. Conclusions Vigipeq is a useful tool but requires improvements in its operational aspects and in the application of the data it generates. Monitoring of environmental health surveillance actions can be optimized by establishing performance indicators and implementing tools to support forecasting and intervention in future events.
Collapse
Affiliation(s)
- Ana Paula Betaressi da Silva
- Ministério da SaúdeSecretaria de Vigilância em Saúde e AmbientePrograma de Treinamento em Epidemiologia Aplicada aos Serviços do Sistema Único de Saúde - avançado (EpiSUS-FETP Brasil)Brasília (DF)BrasilMinistério da Saúde, Secretaria de Vigilância em Saúde e Ambiente, Programa de Treinamento em Epidemiologia Aplicada aos Serviços do Sistema Único de Saúde - avançado (EpiSUS-FETP Brasil), Brasília (DF), Brasil.
| | - Mariely Helena Barbosa Daniel
- Ministério da SaúdeDepartamento de Vigilância em Saúde Ambiental e do TrabalhadorSecretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde AmbientalBrasília (DF)BrasilMinistério da Saúde, Departamento de Vigilância em Saúde Ambiental e do Trabalhador, Secretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde Ambiental, Brasília (DF), Brasil.
| | - Vanessa de Paula Ferreira
- Ministério da SaúdeSecretaria de Vigilância em Saúde e Ambiente, BrasilDepartamento de Emergências em Saúde Pública, Área Técnica por agentes QBRNDistrito Federal (DF)BrasilMinistério da Saúde, Secretaria de Vigilância em Saúde e Ambiente, Brasil, Departamento de Emergências em Saúde Pública, Área Técnica por agentes QBRN, Distrito Federal (DF), Brasil.
| | - Vitória Martins Chaves
- Ministério da SaúdeDepartamento de Vigilância em Saúde Ambiental e do TrabalhadorSecretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde AmbientalBrasília (DF)BrasilMinistério da Saúde, Departamento de Vigilância em Saúde Ambiental e do Trabalhador, Secretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde Ambiental, Brasília (DF), Brasil.
| | - Jéssika Angela Freitas de Oliveira
- Secretaria de Saúde de Santa CatarinaDiretoria de Vigilância EpidemiológicaFlorianópolis (SC)BrasilSecretaria de Saúde de Santa Catarina, Diretoria de Vigilância Epidemiológica, Florianópolis (SC), Brasil.
| | - Adriana Rodrigues Cabral
- Ministério da SaúdeDepartamento de Vigilância em Saúde Ambiental e do TrabalhadorSecretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde AmbientalBrasília (DF)BrasilMinistério da Saúde, Departamento de Vigilância em Saúde Ambiental e do Trabalhador, Secretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde Ambiental, Brasília (DF), Brasil.
| | - Thiago de Brito Magalhães
- Ministério da SaúdeDepartamento de Vigilância em Saúde Ambiental e do TrabalhadorSecretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde AmbientalBrasília (DF)BrasilMinistério da Saúde, Departamento de Vigilância em Saúde Ambiental e do Trabalhador, Secretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde Ambiental, Brasília (DF), Brasil.
| | - Patrick Joseph Connerton
- Ministério da SaúdeDepartamento de Vigilância em Saúde Ambiental e do TrabalhadorSecretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde AmbientalBrasília (DF)BrasilMinistério da Saúde, Departamento de Vigilância em Saúde Ambiental e do Trabalhador, Secretaria de Vigilância em Saúde e Ambiente, Coordenação Geral de Vigilância em Saúde Ambiental, Brasília (DF), Brasil.
| | - Luciana Nogueira de Almeida Guimarães
- Ministério da SaúdeSecretaria de Vigilância em Saúde e AmbientePrograma de Treinamento em Epidemiologia Aplicada aos Serviços do Sistema Único de Saúde - avançado (EpiSUS-FETP Brasil)Brasília (DF)BrasilMinistério da Saúde, Secretaria de Vigilância em Saúde e Ambiente, Programa de Treinamento em Epidemiologia Aplicada aos Serviços do Sistema Único de Saúde - avançado (EpiSUS-FETP Brasil), Brasília (DF), Brasil.
| | - Camile de Moraes
- Fundação Oswaldo Cruz (Fiocruz)Brasília (DF)BrasilFundação Oswaldo Cruz (Fiocruz), Brasília (DF), Brasil.
| | - Orlando Marcos Farias de Sousa
- Secretaria da Saúde do Estado da BahiaDiretoria de Vigilância Sanitária e Saúde AmbientalCoordenação Geral de Vigilância em Saúde AmbientalSalvador (BA)BrasilSecretaria da Saúde do Estado da Bahia, Diretoria de Vigilância Sanitária e Saúde Ambiental, Coordenação Geral de Vigilância em Saúde Ambiental, Salvador (BA), Brasil.
| |
Collapse
|
2
|
Baral S, Silwal SR, Shrestha UM, Lamichhane D. Evaluation of Quality Indicators of Breast Cancer Management at a Tertiary Cancer Center in Nepal. JCO Glob Oncol 2022; 8:e2100303. [PMID: 35298295 PMCID: PMC8955076 DOI: 10.1200/go.21.00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Breast cancer is the second commonest cancer among female in Nepal. This is our first attempt to audit breast cancer management in our institute and compare with standard quality indicators (QIs) available. METHODS The retrospective study included 104 female patients with breast cancer who had taken treatment at Bhaktapur Cancer Hospital in 1 year. Participants were selected on the basis of convenience sampling. Of 33 QIs in breast cancer management according to European Society of Breast Cancer Specialists guidelines, 19 QIs were chosen relevant to our setup. These QIs were calculated for all patients and compared with the European Society of Breast Cancer Specialists standard target. Frequencies and percentages were calculated and presented in tables. Binomial 95% of the rates for QI adherence were also calculated for each QI. RESULTS One hundred four patients had a median age of 47.5 years (range 24-70 years). Applicable QIs were in the range of 5-15 with a mean of 9.66 per patient. Of 19 evaluable QIs, very high adherence rates were observed in six QIs, high adherence in three Qis, and low adherences in 10 QIs. High adherence rates were for QI 5 and QI 10a, which were 88.46% and 94.73%, respectively. The low compliance was for QI 1, QI 4a, QI 8, QI 9d, QI 10b, QI 11a, QI 11b, QI 13b, QI 13e, and 14b, which were 53.84%, 78.21%, 0%, 83.16%, 76.92%, 36.0%, 33.33%, 4.76%, 30.55%, and 10.81%, respectively. CONCLUSION There are several QIs that have low levels of adherence in our setting and suggest that there is significant room for improvement. We will be continuing auditing these QIs regularly to improve our quality of care.
Collapse
Affiliation(s)
- Shweta Baral
- Clinical Oncologist, Bhaktapur Cancer Hospital, Bhaktapur, Nepal
| | | | | | - Deep Lamichhane
- Surgical Oncologist, Bhaktapur Cancer Hospital, Bhaktapur, Nepal
| |
Collapse
|
3
|
Ntakolia C, Kokkotis C, Moustakidis S, Tsaopoulos D. Identification of most important features based on a fuzzy ensemble technique: Evaluation on joint space narrowing progression in knee osteoarthritis patients. Int J Med Inform 2021; 156:104614. [PMID: 34662820 DOI: 10.1016/j.ijmedinf.2021.104614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Feature selection (FS) is a crucial and at the same time challenging processing step that aims to reduce the dimensionality of complex classification or regression problems. Various techniques have been proposed in the literature to address this challenge with emphasis to medical applications. However, each one of the existing FS algorithms come with its own advantages and disadvantages introducing a certain level of bias. MATERIALS AND METHODS To avoid bias and alleviate the defectiveness of single feature selection results, an ensemble FS methodology is proposed in this paper that aggregates the results of several FS algorithms (filter, wrapper and embedded ones). Fuzzy logic is employed to combine multiple feature importance scores thus leading to a more robust selection of informative features. The proposed fuzzy ensemble FS methodology was applied on the problem of knee osteoarthritis (KOA) prediction with special emphasis on the progression of joint space narrowing (JSN). The proposed FS methodology was integrated into an end-to-end machine learning pipeline and a thorough experimental evaluation was conducted using data from the Osteoarthritis Initiative (OAI) database. Several classifiers were investigated for their suitability in the task of JSN prediction and the best performing model was then post-hoc analyzed by using the SHAP method. RESULTS The results showed that the proposed method presented a better and more stable performance in contrast to other competitive feature selection methods, leading to an average accuracy of 78.14% using XG Boost at 31 selected features. The post-hoc explainability highlighted the important features that contribute to the classification of patients with JSN progression. CONCLUSIONS The proposed fuzzy feature selection approach improves the performance of the predictive models by selecting a small optimal subset of features compared to popular feature selection methods.
Collapse
Affiliation(s)
- Charis Ntakolia
- Hellenic National Center of COVID-19 Impact on Youth, University Mental Health Research Institute, Greece; School of Naval Architecture and Marine Engineering, National Technical University of Athens, 15772, Greece.
| | - Christos Kokkotis
- Institute for Bio-Economy and Agri-Technology, Center for Research and Technology Hellas, 38333, Greece; TEFAA, Department of Physical Education and Sport Science, University of Thessaly, 42100, Greece.
| | | | - Dimitrios Tsaopoulos
- Institute for Bio-Economy and Agri-Technology, Center for Research and Technology Hellas, 38333, Greece.
| |
Collapse
|