1
|
Karimian T, Lanzerstorfer P, Weghuber J. Soft lithography-based biomolecule patterning techniques and their applications in subcellular protein interaction analysis. Mater Today Bio 2025; 32:101672. [PMID: 40177382 PMCID: PMC11964549 DOI: 10.1016/j.mtbio.2025.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/05/2025] Open
Abstract
Soft lithography-based contact printing techniques have evolved into versatile methods for creating micro- and nanoscale features of biomolecules on solid substrates. In this review we present the advances in soft lithography for biomolecule deposition and its applications in subcellular protein-protein interaction (PPI) analysis. We discuss various soft lithography techniques, including micro-contact printing (μCP), nano-contact printing (nCP), capillary nanostamping, and polymer-pen-lithography (PPL) and focus on their application in biomolecule patterning on diverse substrates. We then address related challenges and advancements, including substrate selection, surface activation methods, and stamp development. The specific advantages, limitations, and potential solutions for printing various inks and biomolecules are highlighted. Furthermore, recent advances in soft lithography-based biomolecule patterning for subcellular protein interaction analysis are emphasized, demonstrating the importance of these techniques for incorporating complex cellular events into PPI readout modalities and established protein deposition strategies. Finally, an overview of future technologies and enhanced applications is provided.
Collapse
Affiliation(s)
- Tina Karimian
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Stelzhamerstrasse 23, 3430, Tulln, Austria
| |
Collapse
|
2
|
Wang X, Tokarew NJA, Borgelt N, Siemer R, Melo CC, Langer C, Kasampalidis I, Ogusuku IEY, Cathomen T, Gessner I, Dose C, Fauerbach JA, Richter A, Evaristo C. Artificial Targets: a versatile cell-free platform to characterize CAR T cell function in vitro. Front Immunol 2024; 15:1254162. [PMID: 38433827 PMCID: PMC10906080 DOI: 10.3389/fimmu.2024.1254162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer immunotherapies using chimeric antigen receptor (CAR) T cells have tremendous potential and proven clinical efficacy against a number of malignancies. Research and development are emerging to deepen the knowledge of CAR T cell efficacy and extend the therapeutic potential of this novel therapy. To this end, functional characterization of CAR T cells plays a central role in consecutive phases across fundamental research and therapeutic development, with increasing needs for standardization. The functional characterization of CAR T cells is typically achieved by assessing critical effector functions, following co-culture with cell lines expressing the target antigen. However, the use of target cell lines poses several limitations, including alterations in cell fitness, metabolic state or genetic drift due to handling and culturing of the cells, which would increase variabilities and could lead to inconsistent results. Moreover, the use of target cell lines can be work and time intensive, and introduce significant background due to the allogenic responses of T cells. To overcome these limitations, we developed a synthetic bead-based platform ("Artificial Targets") to characterize CAR T cell function in vitro. These synthetic microparticles could specifically induce CAR T cell activation, as measured by CD69 and CD137 (4-1BB) upregulation. In addition, engagement with Artificial Targets resulted in induction of multiple effector functions of CAR T cells mimicking the response triggered by target cell lines including cytotoxic activity, as assessed by exposure of CD107a (LAMP-1), expression and secretion of cytokines, as well as cell proliferation. Importantly, in contrast to target cells, stimulation with Artificial Targets showed limited unspecific CAR T cell proliferation. Finally, Artificial Targets demonstrated flexibility to engage multiple costimulatory molecules that can synergistically enhance the CAR T cell function and represented a powerful tool for modulating CAR T cell responses. Collectively, our results show that Artificial Targets can specifically activate CAR T cells for essential effector functions that could significantly advance standardization of functional assessment of CAR T cells, from early development to clinical applications.
Collapse
Affiliation(s)
- Xueting Wang
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nicholas J. A. Tokarew
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Nadine Borgelt
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Ramona Siemer
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Christian Langer
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Ioannis Kasampalidis
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Isabella E. Y. Ogusuku
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabel Gessner
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Christian Dose
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Jonathan A. Fauerbach
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Richter
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - César Evaristo
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
3
|
Zhou Y, Farooq MA, Ajmal I, He C, Gao Y, Guo D, Duan Y, Jiang W. Co-expression of IL-4/IL-15-based inverted cytokine receptor in CAR-T cells overcomes IL-4 signaling in immunosuppressive pancreatic tumor microenvironment. Biomed Pharmacother 2023; 168:115740. [PMID: 37865999 DOI: 10.1016/j.biopha.2023.115740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
The efficacy of CAR-T cell therapy has been hindered by several factors that are intrinsic to the tumor microenvironment. Many strategies are being employed to overcome these barriers and improve immunotherapies efficacy. Interleukin (IL)- 4 is a cytokine released by tumor cells inside the tumor microenvironment and it can oppose T cell effector functions via engagement with the IL-4 receptor on the surface of T cells. To overcome IL-4-mediated immunosuppressive signals, we designed a novel inverted cytokine receptor (ICR). Our novel CAR construct (4/15NKG2D-CAR), consisted of an NKG2D-based chimeric antigen receptor, co-expressing IL-4R as an extracellular domain and IL-15R as a transmembrane and intracellular domain. In this way, IL-4R inhibitory signals were converted into IL-15R activation signals downstream. This strategy increased the efficacy of NKG2D-CAR-T cells in the pancreatic tumor microenvironment in vitro and in vivo. 4/15NKG2D-CAR-T cells exhibited increased activation, degranulation, cytokine release, and cytotoxic ability of NKG2D-CAR-T cells against IL-4+ pancreatic cell lines. Furthermore, 4/15NKG2D-CAR-T cells exhibited more expansion, less exhaustion, and an increased percentage of less differentiated T cell phenotypes in vitro when compared with NKG2D-CAR-T cells. That is why IL-4R/IL-15R-modified CAR-T cells eradicated more tumors in vivo and outperformed NKG2D-CAR-T cells. Thus, we report here a novel NKG2D-CAR-T cells that could overcome IL-4-mediated immunosuppression in solid tumors.
Collapse
Affiliation(s)
- Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Moreno-Cortes E, Franco-Fuquen P, Garcia-Robledo JE, Forero J, Booth N, Castro JE. ICOS and OX40 tandem co-stimulation enhances CAR T-cell cytotoxicity and promotes T-cell persistence phenotype. Front Oncol 2023; 13:1200914. [PMID: 37719008 PMCID: PMC10502212 DOI: 10.3389/fonc.2023.1200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapies have emerged as an effective and potentially curative immunotherapy for patients with relapsed or refractory malignancies. Treatment with CD19 CAR T-cells has shown unprecedented results in hematological malignancies, including heavily refractory leukemia, lymphoma, and myeloma cases. Despite these encouraging results, CAR T-cell therapy faces limitations, including the lack of long-term responses in nearly 50-70% of the treated patients and low efficacy in solid tumors. Among other reasons, these restrictions are related to the lack of targetable tumor-associated antigens, limitations on the CAR design and interactions with the tumor microenvironment (TME), as well as short-term CAR T-cell persistence. Because of these reasons, we developed and tested a chimeric antigen receptor (CAR) construct with an anti-ROR1 single-chain variable-fragment cassette connected to CD3ζ by second and third-generation intracellular signaling domains including 4-1BB, CD28/4-1BB, ICOS/4-1BB or ICOS/OX40. We observed that after several successive tumor-cell in vitro challenges, ROR1.ICOS.OX40ζ continued to proliferate, produce pro-inflammatory cytokines, and induce cytotoxicity against ROR1+ cell lines in vitro with enhanced potency. Additionally, in vivo ROR1.ICOS.OX40ζ T-cells showed anti-lymphoma activity, a long-lasting central memory phenotype, improved overall survival, and evidence of long-term CAR T-cell persistence. We conclude that anti-ROR1 CAR T-cells that are activated by ICOS.OX40 tandem co-stimulation show in vitro and in vivo enhanced targeted cytotoxicity associated with a phenotype that promotes T-cell persistence.
Collapse
Affiliation(s)
- Eider Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| | - Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| | - Jose Forero
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
- Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Natalie Booth
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
- Cancer Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
5
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
6
|
Da Rocha MN, Guiot M, Nicod C, Trad R, Bouquet L, Haderbache R, Warda W, Baurand PE, Jouanneau C, Dulieu P, Deschamps M, Ferrand C. Coated recombinant target protein helps explore IL-1RAP CAR T-cell functionality in vitro. Immunol Res 2022; 71:276-282. [PMID: 36456721 PMCID: PMC10060290 DOI: 10.1007/s12026-022-09348-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
|
7
|
Fu D, Xie D, Wang F, Chen B, Wang Z, Peng F. Mechanically Optimize T Cells Activation by Spiky Nanomotors. Front Bioeng Biotechnol 2022; 10:844091. [PMID: 35273958 PMCID: PMC8902353 DOI: 10.3389/fbioe.2022.844091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
T cell activation is vital for immune response initiation and modulation. Except for the strength of the interaction between T cell receptors (TCR) and peptides on major histocompatibility complex molecules (MHC), mechanical force, mediated by professional mechanosensitive ion channels, contributes to activating T cells. The intrinsic characteristic of synthetic micro/nanomotors that convert diverse energy sources into physical movement and force, opening up new possibilities for T cell regulation. In this work, Pd/Au nanomotors with spiky morphology were fabricated, and in the presence of low concentrations of hydrogen peroxide fuel, the motors exhibited continuous locomotion in the cellular biological environment. Physical cues (force and pressure) generated by the dynamic performance are sensed by mechanosensitive ion channels of T cells and trigger Ca2+ influx and subsequent activation. The successful demonstration that mechanical signals generated in the bio microenvironment can potentiate T cells activation, represents a potential approach for cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Dongmei Fu
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
| | - Dazhi Xie
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
| | - Fei Wang
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Bin Chen
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhen Wang
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun-Yat-sen University, Guangzhou, China
- *Correspondence: Fei Peng,
| |
Collapse
|