1
|
Ugwu-Korie N, Quaye O, Wright E, Languon S, Agyapong O, Broni E, Gupta Y, Kempaiah P, Kwofie SK. Structure-Based Identification of Natural-Product-Derived Compounds with Potential to Inhibit HIV-1 Entry. Molecules 2023; 28:474. [PMID: 36677538 PMCID: PMC9865492 DOI: 10.3390/molecules28020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are potent in neutralizing a wide range of HIV strains. VRC01 is a CD4-binding-site (CD4-bs) class of bNAbs that binds to the conserved CD4-binding region of HIV-1 envelope (env) protein. Natural products that mimic VRC01 bNAbs by interacting with the conserved CD4-binding regions may serve as a new generation of HIV-1 entry inhibitors by being broadly reactive and potently neutralizing. This study aimed to identify compounds that mimic VRC01 by interacting with the CD4-bs of HIV-1 gp120 and thereby inhibiting viral entry into target cells. Libraries of purchasable natural products were virtually screened against clade A/E recombinant 93TH057 (PDB: 3NGB) and clade B (PDB ID: 3J70) HIV-1 env protein. Protein-ligand interaction profiling from molecular docking and dynamics simulations showed that the compounds had intermolecular hydrogen and hydrophobic interactions with conserved amino acid residues on the CD4-binding site of recombinant clade A/E and clade B HIV-1 gp120. Four potential lead compounds, NP-005114, NP-008297, NP-007422, and NP-007382, were used for cell-based antiviral infectivity inhibition assay using clade B (HXB2) env pseudotype virus (PV). The four compounds inhibited the entry of HIV HXB2 pseudotype viruses into target cells at 50% inhibitory concentrations (IC50) of 15.2 µM (9.7 µg/mL), 10.1 µM (7.5 µg/mL), 16.2 µM (12.7 µg/mL), and 21.6 µM (12.9 µg/mL), respectively. The interaction of these compounds with critical residues of the CD4-binding site of more than one clade of HIV gp120 and inhibition of HIV-1 entry into the target cell demonstrate the possibility of a new class of HIV entry inhibitors.
Collapse
Affiliation(s)
- Nneka Ugwu-Korie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Edward Wright
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Odame Agyapong
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Samuel K. Kwofie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
| |
Collapse
|
2
|
Arantes I, Gräf T, Andrade P, Oliveira Chaves Y, Guimarães ML, Bello G. Dissemination Dynamics of HIV-1 Subtype B Pandemic and Non-pandemic Lineages Circulating in Amazonas, Brazil. Front Microbiol 2022; 13:835443. [PMID: 35330760 PMCID: PMC8940292 DOI: 10.3389/fmicb.2022.835443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
The HIV-1 epidemic in the Amazonas state, as in most of Brazil, is dominated by subtype B. The state, nonetheless, is singular for its significant co-circulation of the variants BCAR, which can mostly be found in the Caribbean region, and BPAN, a clade that emerged in the United States and aggregates almost the totality of subtype B infections world-wide. The Amazonian HIV-1 epidemic provides a unique scenario to compare the epidemic potential of BPAN and BCAR clades spreading in the same population. To reconstruct the spatiotemporal dynamic and demographic history of both subtype B lineages circulating in Amazonas, we analyzed 1,272 HIV-1 pol sequences sampled in that state between 2009 and 2018. Our phylogeographic analyses revealed that while most BCAR infections resulted from a single successful founder event that took place in the Amazonas state around the late 1970s, most BPAN infections resulted from the expansion of multiple clusters seeded in the state since the late 1980s. Our data support the existence of at least four large clusters of the pandemic form in Amazonas, two of them nested in Brazil’s largest known subtype B cluster (BBR–I), and two others resulting from new introductions detected here. The reconstruction of the demographic history of the most prevalent BPAN (n = 4) and BCAR (n = 1) clades identified in Amazonas revealed that all clades displayed a continuous expansion [effective reproductive number (Re) > 1] until most recent times. During the period of co-circulation from the late 1990s onward, the Re of Amazonian BPAN and BCAR clusters behaved quite alike, fluctuating between 2.0 and 3.0. These findings support that the BCAR and BPAN variants circulating in the Brazilian state of Amazonas displayed different evolutionary histories, but similar epidemic trajectories and transmissibility over the last two decades, which is consistent with the notion that both subtype B variants display comparable epidemic potential. Our findings also revealed that despite significant advances in the treatment of HIV infections in the Amazonas state, BCAR and BPAN variants continue to expand and show no signs of the epidemic stabilization observed in other parts of the country.
Collapse
Affiliation(s)
- Ighor Arantes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Paula Andrade
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Yury Oliveira Chaves
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|