1
|
Tan D, Yang X, Yang J, Fan G, Xiong G. PCSK9 in Vascular Aging and Age-Related Diseases. Aging Dis 2025:AD.2024.1713. [PMID: 40354375 DOI: 10.14336/ad.2024.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/27/2025] [Indexed: 05/14/2025] Open
Abstract
The aging process significantly contributes to human disease, and as worldwide life expectancy increases, addressing the challenges of aging and age-related cardiovascular diseases is becoming increasingly urgent. Vascular aging is a key link between aging and the development of age-related diseases. Recent studies indicate that proprotein convertase subtilisin/kexin type 9 (PCSK9), a type of protein involved in the metabolism of lipids, is crucial in modulating vascular aging by affecting the physiological functioning of vascular cells. PCSK9 is linked to lipid metabolism and chronic inflammation and is involved in regulating senescence-related activities, including migration, proliferation, apoptosis, and differentiation. These factors contribute to the aging of vascular cells and age-related vascular diseases, including atherosclerosis, hypertension, coronary artery disease, and cerebrovascular diseases. Given its involvement in these processes, this article provides a comprehensive summary of PCSK9's regulatory functions in vascular aging, highlighting potential therapeutic targets for combating age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Dong Tan
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
| | - Xin Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gang Fan
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Urology, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong Province, China
| | - Guozuo Xiong
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Third Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Wang H, Tang G, Wu J, Qin X. Exploring the Pleiotropy of PCSK9: A Wide Range of Influences from Lipid Regulation to Extrahepatic Function. J Inflamm Res 2025; 18:4509-4532. [PMID: 40182059 PMCID: PMC11967366 DOI: 10.2147/jir.s509222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
In cardiovascular disease, the discovery of the proprotein convertase subtilisin/kexin type 9 (PCSK9) has undoubtedly opened a new chapter in regulating blood lipids. Since its first identification as a key regulator of low-density lipoprotein receptor (LDLR) degradation in 2003, the role of PCSK9 in cholesterol metabolism has been extensively studied. However, with further research, the pleiotropy of PCSK9 has gradually emerged, and its impact extends far beyond cholesterol metabolism in the liver. The purpose of this review is to systematically explore the pleiotropy of PCSK9, extending from its important role in lipid regulation to its extensive effects in extrahepatic tissues, and to reveal its potential role in cardiovascular health, nervous system function, and tumor biology. By integrating the latest research findings, this paper summarizes the complex mechanisms of action of PCSK9 in different biological processes and explores its potential and challenges as a therapeutic target.
Collapse
Affiliation(s)
- Huaru Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Guodong Tang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
- Department of Cardiology, Beijing United Family Hospital, Beijing, 100015, People’s Republic of China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Infrastructure for Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, 100730, People’s Republic of China
| | - Xuzhen Qin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
3
|
Cao Zhang AM, Ziogos E, Harb T, Gerstenblith G, Leucker TM. Emerging clinical role of proprotein convertase subtilisin/kexin type 9 inhibition-Part two: Current and emerging concepts in the clinical use of PCSK9 inhibition. Eur J Clin Invest 2024; 54:e14272. [PMID: 38924090 DOI: 10.1111/eci.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have emerged as a novel class of drugs with cardioprotective effects through their lipid-lowering effects. OBJECTIVE This review aims to discuss existing and novel strategies of PCSK9 inhibition, providing an overview of established randomized controlled trials and ongoing outcome trials that assess the efficacy and long-term safety of PCSK9 inhibitors. It also explores the evolving role of PCSK9 beyond lipid metabolism and outlines the pleiotropic actions of PCSK9 inhibition in various disorders and future directions including novel strategies to target PCSK9. CONCLUSION PCSK9 inhibition shows promise not only in lipid metabolism but also in other disease processes, including atherosclerotic plaque remodeling, acute coronary syndrome, stroke, inflammation, and immune response.
Collapse
Affiliation(s)
- Alexander M Cao Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Efthymios Ziogos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tarek Harb
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Golledge J, Lu HS, Shah S. Proprotein convertase subtilisin/kexin type 9 as a drug target for abdominal aortic aneurysm. Curr Opin Lipidol 2024; 35:241-247. [PMID: 39052843 PMCID: PMC11387138 DOI: 10.1097/mol.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW There are no current drug therapies to limit abdominal aortic aneurysm (AAA) growth. This review summarizes evidence suggesting that inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) may be a drug target to limit AAA growth. RECENT FINDINGS Mendelian randomization studies suggest that raised LDL and non-HDL-cholesterol are causal in AAA formation. PCSK9 was reported to be upregulated in human AAA samples compared to aortic samples from organ donors. PCSK9 gain of function viral vectors promoted aortic expansion in C57BL/6 mice infused with angiotensin II. The effect of altering PCSK9 expression in the aortic perfusion elastase model was reported to be inconsistent. Mutations in the gene encoding PCSK9, which increase serum cholesterol, were associated with increased risk of human AAA. Patients with AAA also have a high risk of cardiovascular death, myocardial infarction and stroke. Recent research suggests that PCSK9 inhibition would substantially reduce the risk of these events. SUMMARY Past research suggests that drugs that inhibit PCSK9 have potential as a novel therapy for AAA to both limit aneurysm growth and reduce risk of cardiovascular events. A large multinational randomized controlled trial is needed to test if PCSK9 inhibition limits AAA growth and cardiovascular events.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland
- The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland
| | - Hong S. Lu
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Sonia Shah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland
| |
Collapse
|
5
|
Vujkovic M. Assessing Long-Term Liver Safety of Statins and PCSK9 Inhibitors Using Human Genetics. Cell Mol Gastroenterol Hepatol 2023; 17:173-174. [PMID: 37944904 PMCID: PMC10791591 DOI: 10.1016/j.jcmgh.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Marijana Vujkovic
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Mak MCE, Gurung R, Foo RSY. Applications of Genome Editing Technologies in CAD Research and Therapy with a Focus on Atherosclerosis. Int J Mol Sci 2023; 24:14057. [PMID: 37762360 PMCID: PMC10531628 DOI: 10.3390/ijms241814057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases, particularly coronary artery disease (CAD), remain the leading cause of death worldwide in recent years, with myocardial infarction (MI) being the most common form of CAD. Atherosclerosis has been highlighted as one of the drivers of CAD, and much research has been carried out to understand and treat this disease. However, there remains much to be better understood and developed in treating this disease. Genome editing technologies have been widely used to establish models of disease as well as to treat various genetic disorders at their root. In this review, we aim to highlight the various ways genome editing technologies can be applied to establish models of atherosclerosis, as well as their therapeutic roles in both atherosclerosis and the clinical implications of CAD.
Collapse
Affiliation(s)
| | - Rijan Gurung
- Cardiovascular Research Institute, Cardiovascular and Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD6, #08-01, Singapore 117599, Singapore; (M.C.E.M.); (R.S.Y.F.)
| | | |
Collapse
|
7
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
8
|
Cosin-Sales J, Sidelnikov E, Villamayor S, Fernández M, Merino-Montero S, Zamora A. Identification of Secondary Prevention Patients Eligible for PCSK9 Inhibitors Therapy According to the Routine Clinical Practice in Spain. Adv Ther 2023; 40:2710-2724. [PMID: 36525203 PMCID: PMC10220136 DOI: 10.1007/s12325-022-02384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Many patients at very high risk of cardiovascular (CV) events would benefit from lipid-lowering therapies (LLT) intensification to decrease their risk. This study aimed to identify the real-world secondary prevention patients potentially eligible for proprotein convertase subtilisin-kexin type 9 inhibitors (PCSK9i) in Spain. METHODS This retrospective cohort study included adult patients registered in the IQVIA Spanish Electronic Medical Records outpatient database (2014-2020), diagnosed with myocardial infarction (MI), unstable angina (UA), ischaemic stroke (IS), transient ischaemic attack (TIA) or peripheral artery disease (PAD) and with ≥ 1 low-density lipoprotein cholesterol (LDL-C) or total cholesterol measurements. Longitudinal data were collected from the initial diagnosis to the end of the study period or follow-up loss. RESULTS The study included 9516 patients, 63.9% male, mean (SD) age 67.7 (12.5) years and mean LDL-C 117.3 (38.8) mg/dL. MI, IS and PAD were the most severe events reported during the study period (28.5%, 18.7% and 29.3% of patients, respectively). At the time of last available LDL-C assessment (≥ 3 months post-event), 64.4% patients were on LLT. Of those, 45.4%, 46.9% and 7.7% were on high-, moderate- and low-intensity LLT. Overall, 9.6% patients achieved LDL-C < 55 mg/dL (24.2% LDL-C < 70 mg/dL). Furthermore, 17.9% patients receiving optimized oral LLT showed LDL-C > 100 mg/dL (LDL-C reimbursement threshold for PCSK9i in Spain). CONCLUSION Up to 82% of patients with atherosclerotic CV disease do not achieve LDL-C levels recommended by the 2019 ESC/EAS guidelines despite being on optimized oral LLT therapy. In 17.9% of these patients LDL-C levels exceed 100 mg/dL, being eligible for PCSK9i in Spain.
Collapse
Affiliation(s)
- Juan Cosin-Sales
- Servicio de Cardiología, Hospital Arnau de Vilanova, Carrer de Sant Clement, 12, 46015, Valencia, Spain.
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrena, Moncada, Valencia, Spain.
| | | | | | | | | | - Alberto Zamora
- Unidad de Riesgo Vascular y Lípidos Corporació de Salut del Maresme i la Selva, Barcelona, Spain
| |
Collapse
|
9
|
Gill PK, Hegele RA. Low cholesterol states: clinical implications and management. Expert Rev Endocrinol Metab 2023; 18:241-253. [PMID: 37089071 DOI: 10.1080/17446651.2023.2204932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Hypocholesterolemia results from genetic - both monogenic and polygenic - and non-genetic causes and can sometimes be a source of clinical concern. We review etiologies and sequelae of hypocholesterolemia and therapeutics inspired from genetic hypocholesterolemia. AREAS COVERED Monogenic hypocholesterolemia disorders caused by the complete absence of apolipoprotein (apo) B-containing lipoproteins (abetalipoproteinemia and homozygous hypobetalipoproteinemia) or an isolated absence of apo B-48 lipoproteinemia (chylomicron retention disease) lead to clinical sequelae. These include gastrointestinal disturbances and severe vitamin deficiencies that affect multiple body systems, i.e. neurological, musculoskeletal, ophthalmological, and hematological. Monogenic hypocholesterolemia disorders with reduced but not absent levels of apo B lipoproteins have a milder clinical presentation and patients are protected against atherosclerotic cardiovascular disease. Patients with heterozygous hypobetalipoproteinemia have somewhat increased risk of hepatic disease, while patients with PCSK9 deficiency, ANGPTL3 deficiency, and polygenic hypocholesterolemia typically have anunremarkable clinical presentation. EXPERT OPINION In patients with severe monogenic hypocholesterolemia, early initiation of high-dose vitamin therapy and a low-fat diet are essential for optimal prognosis. The molecular basis of monogenic hypocholesterolemia has inspired novel therapeutics to help patients with the opposite phenotype - i.e. elevated apo B-containing lipoproteins. In particular, inhibitors of PCSK9 and ANGPTL3 show important clinical impact.
Collapse
Affiliation(s)
- Praneet K Gill
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
10
|
Bell AS, Wagner J, Rosoff DB, Lohoff FW. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neurosci Biobehav Rev 2023; 149:105155. [PMID: 37019248 DOI: 10.1016/j.neubiorev.2023.105155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.
Collapse
|
11
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
12
|
Zamarrón-Licona E, Rodríguez-Pérez JM, Posadas-Sánchez R, Vargas-Alarcón G, Baños-González MA, Borgonio-Cuadra VM, Pérez-Hernández N. Variants of PCSK9 Gene Are Associated with Subclinical Atherosclerosis and Cardiometabolic Parameters in Mexicans. The GEA Project. Diagnostics (Basel) 2021; 11:diagnostics11050774. [PMID: 33925815 PMCID: PMC8145882 DOI: 10.3390/diagnostics11050774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Coronary artery disease (CAD) is a chronic, inflammatory, and complex disease associated with vascular risk factors. Nowadays, the coronary artery calcium (CAC) is a specific marker of the presence and extent of atherosclerosis. Additionally, CAC is a predictor of future coronary events in asymptomatic individuals diagnosed with subclinical atherosclerosis (CAC > 0). In this study, our aim is to evaluate the participation of two polymorphisms of the PCSK9 gene as genetic markers for developing subclinical atherosclerosis and cardiometabolic risk factors in asymptomatic individuals. Methods: We analyzed two PCSK9 polymorphisms (rs2479409 and rs615563) in 394 individuals with subclinical atherosclerosis and 1102 healthy controls using real time- polymerase chain reaction (PCR). Results: Under various inheritance models adjusted for different confounding factors, the rs2479409 polymorphism was associated with an increased risk of developing subclinical atherosclerosis (OR = 1.53, P recessive = 0.041). Both polymorphisms were significantly associated with several cardiometabolic parameters. Conclusions: Our data suggest that rs2479409 polymorphism could be envisaged as a risk marker for subclinical atherosclerosis.
Collapse
Affiliation(s)
- Erasmo Zamarrón-Licona
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico; (E.Z.-L.); (J.M.R.-P.); (G.V.-A.)
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico; (E.Z.-L.); (J.M.R.-P.); (G.V.-A.)
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico; (E.Z.-L.); (J.M.R.-P.); (G.V.-A.)
| | - Manuel Alfonso Baños-González
- Centro de Investigación y Posgrado, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86150, Mexico;
| | | | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico; (E.Z.-L.); (J.M.R.-P.); (G.V.-A.)
- Correspondence: ; Tel.: +52-55-55732911 (ext. 26301)
| |
Collapse
|