1
|
Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AEA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother 2023; 162:114676. [PMID: 37037091 DOI: 10.1016/j.biopha.2023.114676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Due to the strong association between diabetes and cancer incidents, several anti-diabetic drugs, including metformin, have been examined for their anticancer activity. Metformin is a biguanide antihyperglycemic agent used as a first-line drug for type II diabetes mellitus. It exhibits anticancer activity by impacting different molecular pathways, such as AMP-inducible protein kinase (AMPK)-dependent and AMPK-independent pathways. Additionally, Metformin indirectly inhibits IGF-1R signaling, which is highly activated in breast malignancy. On the other hand, breast cancer is one of the major causes of cancer-related morbidity and mortality worldwide, where the human epidermal growth factor receptor-positive (HER2-positive) subtype is one of the most aggressive ones with a high rate of lymph node metastasis. In this review, we summarize the association between diabetes and human cancer, listing recent evidence of metformin's anticancer activity. A special focus is dedicated to HER2-positive breast cancer with regards to the interaction between HER2 and IGF-1R. Then, we discuss combination therapy strategies of metformin and other anti-diabetic drugs in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sarah Khalaf
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, PO. Box 2713, Doha, Qatar; Oncology Department, McGill University, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
2
|
Tamoxifen Modulates the Immune Landscape of the Tumour Microenvironment: The Paired Siglec-5/14 Checkpoint in Anti-Tumour Immunity in an In Vitro Model of Breast Cancer. Int J Mol Sci 2023; 24:ijms24065512. [PMID: 36982588 PMCID: PMC10057974 DOI: 10.3390/ijms24065512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Since the role of sialome–Siglec axis has been described as a regulatory checkpoint of immune homeostasis, the promotion of stimulatory or inhibitory Siglec-related mechanisms is crucial in cancer progression and therapy. Here, we investigated the effect of tamoxifen on the sialic acid–Siglec interplay and its significance in immune conversion in breast cancer. To mimic the tumour microenvironment, we used oestrogen-dependent or oestrogen-independent breast cancer cells/THP-1 monocytes transwell co-cultures exposed to tamoxifen and/or β-estradiol. We found changes in the cytokine profiles accompanied by immune phenotype switching, as measured by the expression of arginase-1. The immunomodulatory effects of tamoxifen in THP-1 cells occurred with the altered SIGLEC5 and SIGLEC14 genes and the expression of their products, as confirmed by RT-PCR and flow cytometry. Additionally, exposure to tamoxifen increased the binding of Siglec-5 and Siglec-14 fusion proteins to breast cancer cells; however, these effects appeared to be unassociated with oestrogen dependency. Our results suggest that tamoxifen-induced alterations in the immune activity of breast cancer reflect a crosstalk between the Siglec-expressing cells and the tumour’s sialome. Given the distribution of Siglec-5/14, the expression profile of inhibitory and activatory Siglecs in breast cancer patients may be useful in the verification of therapeutic strategies and predicting the tumour’s behaviour and the patient’s overall survival.
Collapse
|
3
|
Yang K, Pei L, Zhou S, Tao L, Zhu Y. Metformin attenuates H 2O 2-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway. Exp Ther Med 2021; 22:1316. [PMID: 34630670 PMCID: PMC8495548 DOI: 10.3892/etm.2021.10751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a common metabolic disease that has a high incidence in postmenopausal women. Studies have indicated that oxidative damage plays an important role in the development of postmenopausal osteoporosis. Metformin has been showed to have the ability to relieve excessive oxidation. The aim of the present was to determine the therapeutic effect and potential mechanism of metformin in postmenopausal osteoporosis. Oxidative damage was stimulated in vitro by the addition of H2O2 to MC3T3-E1 cells and a mouse menopausal model was also constructed. Cell viability and flow cytometry experiments were performed to determine the effects of H2O2 and metformin treatment on apoptosis. Mitochondrial membrane potential was tested by JC-1 assays. Western blotting was used to detect the expression of mitochondrial apoptosis markers and antioxidant enzymes. Small interfering RNA was used to knockdown sirtuin3 (SIRT3), which was verified at the mRNA and protein levels. Bilateral ovariectomy was used to prepare menopausal mice, which were analyzed using micro-computed tomography. The results indicated that metformin is able to repair mitochondrial damage and inhibit the apoptosis of osteoblasts induced by H2O2, and also reverse bone mass loss in ovariectomized mice. Western blotting results demonstrated the involvement of SIRT3 in the production of antioxidant enzymes that are essential in protecting against mitochondrial injury. In addition, experiments with SIRT3 knockdown indicated that metformin reverses H2O2-induced osteoblast apoptosis by upregulating the expression of SIRT3 via the PI3K/AKT pathway. The results of the present reveal the pathogenesis of oxidative damage and the therapeutic effect of metformin in postmenopausal osteoporosis. They also suggest that SIRT3 is a potential drug target in the treatment of osteoporosis, with metformin being a candidate drug for modification and/or clinical application.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Pei
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Siming Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
4
|
Wu Z, Zhang C, Najafi M. Targeting of the tumor immune microenvironment by metformin. J Cell Commun Signal 2021; 16:333-348. [PMID: 34611852 DOI: 10.1007/s12079-021-00648-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Stimulating antitumor immunity is an attractive idea for suppressing tumors. CD4 + and CD8 + T cells as well as natural killer cells (NK) are the primary antitumor immune cells in the tumor microenvironment (TME). In contrast to these cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) release several molecules to suppress antitumor immunity and stimulate cancer cell invasion and proliferation. Adjuvant treatment with certain nontoxic agents is interesting to boost antitumor immunity. Metformin, which is known as an antidiabetes drug, can modulate both antitumor and protumor immune cells within TME. It has the ability to induce the proliferation of CD8 + T lymphocytes and NK cells. On the other hand, metformin attenuates polarization toward TAMs, CAFs, and Tregs. Metformin also may stimulate the antitumor activity of immune system cells, while it interrupts the positive cross-talk and interactions between immunosuppressive cells and cancer cells. The purpose of this review is to explain the basic mechanisms for the interactions and communications between immunosuppressive, anti-tumoral, and cancer cells within TME. Next, we discuss the modulating effects of metformin on various cells and secretions in TME.
Collapse
Affiliation(s)
- Zihong Wu
- Department of Oncology, The NO.3 People's Hospital of Hubei Province, Jianghan University, Wuhan, 430033, Hubei, China
| | - Caidie Zhang
- Emergency Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Metformin Affects Olaparib Sensitivity through Induction of Apoptosis in Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms221910557. [PMID: 34638899 PMCID: PMC8508816 DOI: 10.3390/ijms221910557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2′,7′-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.
Collapse
|
6
|
Dahou S, Smahi MCE, Nouari W, Dahmani Z, Benmansour S, Ysmail-Dahlouk L, Miliani M, Yebdri F, Fakir N, Laoufi MY, Chaib-Draa M, Tourabi A, Aribi M. L-Threoascorbic acid treatment promotes S. aureus-infected primary human endothelial cells survival and function, as well as intracellular bacterial killing, and immunomodulates the release of IL-1β and soluble ICAM-1. Int Immunopharmacol 2021; 95:107476. [PMID: 33676147 DOI: 10.1016/j.intimp.2021.107476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin C (ascorbic acid, AscH2) has been shown to enhance immunity. Here, we studied its immunomodulatory effect on human endothelial cells (ECs) during S. aureus infection. MATERIALS AND METHODS The ex vivo effects of AscH2 were performed on primary human umbilical vein endothelial cells (HUVECs) infected or not with S. aureus. RESULTS AscH2 treatment induced a marked downregulation of nitric oxide (NO) production and a moderate upregulation of arginase activity in S. aureus-infected HUVECs (respectively, p < 0.05 and p > 0.05). Although the upregulated release levels of soluble intercellular adhesion molecular 1 (sICAM-1/sCD54) and sE-selectin (sCD62E) molecules were not significantly different between treated and untreated S. aureus-infected HUVECs, AscH2 treatment induced reversing effect on sICAM-1 release when comparing to uninfected control HUVECs. Moreover, AscH2 treatment appears to have a significant effect on preventing HUVEC necrosis induced by S. aureus infection (p < 0.05). Furthermore, AscH2 treatment induced a significant upregulation of cell protective redox biomarker in S. aureus-infected, as shown by superoxide dismutase (SOD) activity (p < 0.05), but not by catalase activity (p > 0.05). Additionally, S. aureus infection markedly downregulated total bound calcium ions (bCa2+) levels as compared to control HUVECs, whereas, AscH2 treatment induced a slight upregulation of bCa2+ levels in infected HUVECs as compared to infected and untreated HUVECs (p > 0.05). On the other hand, AscH2 treatment downregulated increased total cellular cholesterol content (tccCHOL) levels in HUVECs induced by S. aureus infection (p < 0.05). In addition, AscH2 treatment markedly reversed S. aureus effect on upregulation of intracellular glucose (iGLU) levels within infected HUVECs (p < 0.05). Moreover, AscH2 treatment significantly downregulated S. aureus growth (p < 0.05), and significantly upregulated bacterial internalization and intracellular killing by HUVECs (p < 0.05), as well as their cell cycle activation (p < 0.01). Finally, AscH2 treatment has a slight effect on the production of interleukin 6 (IL-6), but induced a marked downregulation of that of IL-1β in S. aureus-infected HUVECs (respectively, p > 0.05, and p < 0.05). CONCLUSIONS Our outcomes demonstrated that, during S. aureus infection, AscH2 treatment promotes human ECs survival and function, as well as prevents inflammatory response exacerbation, while inducing bactericidal activity.
Collapse
Affiliation(s)
- Sara Dahou
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Zoheir Dahmani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Lamia Ysmail-Dahlouk
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Maroua Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Fadela Yebdri
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Nassima Fakir
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Yassine Laoufi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mouad Chaib-Draa
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Amina Tourabi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria.
| |
Collapse
|