1
|
Bartoszewska E, Misiąg P, Czapla M, Rakoczy K, Tomecka P, Filipski M, Wawrzyniak-Dzierżek E, Choromańska A. The Role of microRNAs in Lung Cancer: Mechanisms, Diagnostics and Therapeutic Potential. Int J Mol Sci 2025; 26:3736. [PMID: 40332376 PMCID: PMC12027727 DOI: 10.3390/ijms26083736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that do not have coding functions but play essential roles in various biological processes. In lung cancer, miRNAs affect the processes of tumor initiation, progression, metastasis, and resistance to treatment by regulating gene expression. Tumor-suppressive miRNAs inhibit oncogenic pathways, while oncogenic miRNAs, known as oncomiRs, promote malignant transformation and tumor growth. These dual roles position miRNAs as critical players in lung cancer biology. Studies in recent years have shown the significant potential of miRNAs as both prognostic and diagnostic biomarkers. Circulating miRNAs in plasma or sputum demonstrate specificity and sensitivity in detecting early-stage lung cancer. Liquid biopsy-based miRNA panels distinguish malignant from benign lesions, and specific miRNA expression patterns correlate with disease progression, response to treatment, and overall survival. Therapeutically, miRNAs hold promise for targeted interventions. Strategies such as miRNA replacement therapy using mimics for tumor-suppressive miRNAs and inhibition of oncomiRs with antagomiRs or miRNA sponges have shown preclinical success. Key miRNAs, including the let-7 family, miR-34a, and miR-21, are under investigation for their therapeutic potential. It should be emphasized that delivery difficulties, side effects, and limited stability of therapeutic miRNA molecules remain obstacles to their clinical use. This article examines the roles of miRNAs in lung cancer by indicating their mechanisms of action, diagnostic significance, and therapeutic potential. By addressing current limitations, miRNA-based approaches could revolutionize lung cancer management, offering precise, personalized, and minimally invasive solutions for diagnosis and treatment.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Piotr Misiąg
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Melania Czapla
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Elżbieta Wawrzyniak-Dzierżek
- Department and Clinic of Bone Marrow Transplantation, Oncology and Pediatric Hematology, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Chen S, Wang H, Guo M, Zhao X, Yang J, Chen L, Zhao J, Chen C, Zhou Y, Xu L. Promoter A1312C mutation leads to microRNA-7 downregulation in human non-small cell lung cancer. Cell Signal 2024; 117:111095. [PMID: 38346527 DOI: 10.1016/j.cellsig.2024.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
MicroRNA-7 (miRNA-7, miR-7) is a unique class of tumor suppressors, plays an important role in various physiological and pathological processes including human non-small cell lung cancer (NSCLC). In previous works, we revealed that miR-7 could regulate the growth and metastasis of human NSCLC cells. However, the mechanism of dysregulated miR-7 expression in NSCLC remains to be further elucidated. In this study, based on clinical sample analysis, we found that the downregulated expression of miR-7 was dominantly attributed to the decreased level of pri-miR-7-2 in human NSCLC. Furthermore, there were four site mutations in the miR-7-2 promoter sequence. Notably, among these four sites, mutation at -1312 locus (A → C, termed as A1312C mutation) was dominate, and A1312C mutation further led to decreased expression of miR-7 in human NSCLC cells, accompanied with elevated transduction of NDUFA4/ERK/AKT signaling pathway. Mechanistically, homeobox A5 (HOXA5) is the key transcription factors regulating miR-7 expression in NSCLC. A1312C mutation impairs HOXA5 binding, thereby reducing the transcriptional activity of miR-7-2 promoter, resulting in downregulation of miR-7 expression. Together, these data may provide new insights into the dysregulation of specific miRNA expression in NSCLC and ultimately prove to be helpful in the diagnostic, prognostic, and therapeutic strategies against NSCLC.
Collapse
Affiliation(s)
- Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Hui Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Medical Physics, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi 563000, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
4
|
The Role of the Selected miRNAs as Diagnostic, Predictive and Prognostic Markers in Non-Small-Cell Lung Cancer. J Pers Med 2022; 12:jpm12081227. [PMID: 36013176 PMCID: PMC9410235 DOI: 10.3390/jpm12081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, overtaking colon, breast, and prostate cancer-related deaths. Due to the limited diagnostic possibilities, it is often diagnosed after it has reached an advanced stage. The delayed diagnosis significantly worsens the patient’s prognosis. In recent years, we have observed an increased interest in the use of microRNAs (miRNAs) as diagnostic, predictive, and prognostic markers in non-small-cell lung cancer (NSCLC). The abnormal expression levels of the miRNAs could be used to detect NSCLC in its early stages while it is still asymptomatic. This could drastically improve the clinical outcome. Furthermore, some miRNAs could serve as promising predictive and prognostic factors for NSCLC. Some of the currently available studies have shown a correlation between the miRNAs’ levels and the sensitivity of tumour cells to different treatment regimens. Analysing and modulating the miRNAs’ expression could be a way to predict and improve the treatment’s outcome.
Collapse
|
5
|
Gong J, Shen Y, Jiang F, Wang Y, Chu L, Sun J, Shen P, Chen M. MicroRNA‑20a promotes non‑small cell lung cancer proliferation by upregulating PD‑L1 by targeting PTEN. Oncol Lett 2022; 23:148. [PMID: 35350588 PMCID: PMC8941509 DOI: 10.3892/ol.2022.13269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the most common malignant tumors worldwide. The aim of the present study was to investigate the possibility of microRNA-20a (miR-20a) as a biomarker and therapeutic target for the diagnosis and treatment of NSCLC. Bioinformatics prediction, together with functional validation, confirmed miR-20a bound to programmed death ligand-1 (PD-L1) 3′-untranslated region to upregulate PD-L1 expression. Both miR-20a and PD-L1 could promote the proliferation of NSCLC cells. The expression level of PD-L1 was controlled by PTEN; however, further upstream regulation of PD-L1 expression was largely unknown. The present study showed that miR-20a could not restore the inhibition of PD-L1 expression levels by PTEN. Knockdown of PTEN expression upregulated the expression level of PD-L1 and promoted the proliferation of NSCLC cells. PTEN negatively regulated the Wnt/β-catenin signaling pathway by inhibiting β-catenin and Cyclin D1. Interestingly, PTEN could reverse miR-20a-mediated proliferation of NSCLC cells and the inhibitory effect was similar to that of XAV-939. miR-20a promotes the proliferation of NSCLC cells by inhibiting the expression level of PTEN and upregulating the expression level of PD-L1. It is suggested that miR-20a could be used as a biomarker and therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jiaomei Gong
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Yong Shen
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Fuguo Jiang
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan 454000, P.R. China
| | - Yan Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Lulu Chu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Jinqi Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Pengxiao Shen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Maocai Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| |
Collapse
|
6
|
Li ZH, Zhou JH, Chen SN, Pan L, Feng Y, Luo MQ, Li RX, Sun GL. MicroRNA-506 has a suppressive effect on the tumorigenesis of nonsmall-cell lung cancer by regulating tubby-like protein 3. Bioengineered 2021; 12:10176-10186. [PMID: 34874810 PMCID: PMC8810049 DOI: 10.1080/21655979.2021.2001216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-506 (miR-506), a miRNA, has been proven to act as a tumor suppressor gene in nonsmall-cell lung cancer (NSCLC); Tubby-like protein 3 (TULP3) is a potential target gene of miR-506. This study investigates whether miR-506 can prevent NSCLC progression by mediating TULP3. In vivo and in vitro experiments were performed to explore the function and potential regulatory relationship of miR-506 and TULP3 in NSCLC. Our results revealed that miR-506 is high expression in NSCLC cell lines, and the overexpression of miR-506 could inhibit cell viability and enhance cell apoptosis in H1299 and A549 cells. Pro-apoptotic related protein (cytochrome C, Bax, and cleaved caspase-9) expression increased while anti-apoptotic related protein (BCL-2 and BCL-XL) expression decreased after miR-506 was overexpression. Meanwhile, the overexpression of miR-506 could notably downregulate TULP3. Additionally, silence of TULP3 inhibited cell viability and promoted cell apoptosis. At the same time, pro-apoptotic related protein expression was promoted while anti-apoptotic related protein expression was inhibited. Furthermore, TULP3 overexpression could markedly reverse the inhibitory effect of miR-506 on the proliferation and induction of mitochondrial apoptosis in H1299 and A549 cells. In vivo tumor formation experiments also exhibited consistent results indicating that the functions of TULP3 might be correlated with the promotion of tumorigenesis. In conclusion, we firstly found that miR-506 can be involved in the processes of NSCLC and exert a suppressive effect on tumorigenesis by regulating TULP3 expression.
Collapse
Affiliation(s)
- Zhan-Hua Li
- Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Ji-Hong Zhou
- Department of Respiratory Medicine, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Si-Ning Chen
- Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Ling Pan
- Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Yuan Feng
- Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Mei-Qun Luo
- Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Rui-Xiang Li
- Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Gui-Li Sun
- Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, China
| |
Collapse
|
7
|
Geater SL, Chaniad P, Trakunram K, Keeratichananont W, Buya S, Thongsuksai P, Raungrut P. Diagnostic and prognostic value of serum miR-145 and vascular endothelial growth factor in non-small cell lung cancer. Oncol Lett 2021; 23:12. [PMID: 34820011 PMCID: PMC8607352 DOI: 10.3892/ol.2021.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Previous studies have reported the diagnostic and prognostic value of serum microRNA (miR)-145 and vascular endothelial growth factor (VEGF) levels in various types of cancer; however, their clinical use in non-small cell lung cancer (NSCLC) remains unclear. The present study included 215 patients, 106 with NSCLC and 109 with other lung diseases (OLDs). miR-145 expression levels were determined using reverse transcription-quantitative PCR (RT-qPCR) and VEGF levels were measured using an ELISA. The diagnostic performance was assessed using a receiver operating characteristic curve and area under the curve (AUC) analysis. A Kaplan-Meier survival curve and Cox regression analysis were employed to evaluate the prognostic significance of the markers. The biological function of miR-145 was examined in A549 and H1792 cell lines. The effects of miR-145 on cell proliferation of NSCLC cells were evaluated by flow cytometry, and the expression levels of miR-145 and cell cycle-related genes were determined by RT-qPCR. The results revealed that miR-145 and VEGF exhibited fair diagnostic performance [AUC, 0.61 (95% CI, 0.55-0.68) and AUC, 0.64 (95% CI, 0.57-0.71), respectively]. Combining age and smoking status with miR-145 and VEGF provided the best model for differentiating patients with NSCLC from those with OLDs (AUC, 0.76; 95% CI, 0.69-0.83). Furthermore, low serum miR-145 levels were associated with poor overall survival [hazard ratio (HR), 0.48; 95% CI, 0.27-0.85], whereas high VEGF levels were not associated with poor overall survival (HR, 1.47; 95% CI, 0.81-2.68). In addition, the results of the in vitro experiments indicated that miR-145 decreased cell proliferation via the induction of cell cycle arrest. In conclusion, the findings of the present study suggested that combining miR-145 and VEGF levels with clinical risk factors may be a potential diagnostic scheme for NSCLC. In addition, serum miR-145 may be used as a prognostic marker. These results indicated that miR-145 may function as a tumor suppressor in NSCLC.
Collapse
Affiliation(s)
- Sarayut Lucien Geater
- Department of Internal Medicine, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pichitpon Chaniad
- Department of Biomedical Sciences and Biomedical Engineering, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Keson Trakunram
- Department of Biomedical Sciences and Biomedical Engineering, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Warangkana Keeratichananont
- Department of Internal Medicine, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suhaimee Buya
- Medical Data Center for Research and Innovation, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paramee Thongsuksai
- Department of Pathology, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pritsana Raungrut
- Department of Biomedical Sciences and Biomedical Engineering, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
8
|
de Sá Pereira BM, Montalvão de Azevedo R, da Silva Guerra JV, Faria PA, Soares-Lima SC, De Camargo B, Maschietto M. Non-coding RNAs in Wilms' tumor: biological function, mechanism, and clinical implications. J Mol Med (Berl) 2021; 99:1043-1055. [PMID: 33950291 DOI: 10.1007/s00109-021-02075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Non-coding RNAs are involved with maintenance and regulation of physiological mechanisms and are involved in pathological processes, such as cancer. Among the small ncRNAs, miRNAs are the most explored in tumorigenesis, metastasis development, and resistance to chemotherapy. These small molecules of ~ 22 nucleotides are modulated during early renal development, involved in the regulation of gene expression and Wilms' tumor progression. Wilms' tumors are embryonic tumors with few mutations and complex epigenetic dysregulation. In recent years, the small ncRNAs have been explored as potentially related both in physiological development and in the tumorigenesis of several types of cancer. Besides, genes regulated by miRNAs are related to biological pathways as PI3K, Wnt, TGF-β, and Hippo signaling pathways, among others, which may be involved with the underlying mechanisms of resistance to chemotherapy, and in this way, it has emerged as potential targets for cancer therapies, including for Wilms' tumors.
Collapse
Affiliation(s)
| | - Rafaela Montalvão de Azevedo
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil.,Current institution: Molecular Bases of Genetic Risk and Genetic Testing Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - João Victor da Silva Guerra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutic Sciences, University of Campinas, Campinas, SP, Brazil
| | - Paulo A Faria
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil
| | | | | | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil. .,Current: Research Institute, Boldrini Children's Hospital, Rua Dr. Gabriel Porto, 1270 - Cidade Universitária, Campinas, SP, 13083-210, Brazil.
| |
Collapse
|