1
|
Kanteh A, Jallow HS, Manneh J, Sanyang B, Kujabi MA, Ndure SL, Jarju S, Sey AP, Damilare K D, Bah Y, Sambou S, Jarju G, Manjang B, Jagne A, Bittaye SO, Bittaye M, Forrest K, Tiruneh DA, Samateh AL, Jagne S, Hué S, Mohammed N, Amambua-Ngwa A, Kampmann B, D'Alessandro U, de Silva TI, Roca A, Sesay AK. Genomic epidemiology of SARS-CoV-2 infections in The Gambia: an analysis of routinely collected surveillance data between March, 2020, and January, 2022. Lancet Glob Health 2023; 11:e414-e424. [PMID: 36796985 PMCID: PMC9928486 DOI: 10.1016/s2214-109x(22)00553-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND COVID-19, caused by SARS-CoV-2, is one of the deadliest pandemics of the past 100 years. Genomic sequencing has an important role in monitoring of the evolution of the virus, including the detection of new viral variants. We aimed to describe the genomic epidemiology of SARS-CoV-2 infections in The Gambia. METHODS Nasopharyngeal or oropharyngeal swabs collected from people with suspected cases of COVID-19 and international travellers were tested for SARS-CoV-2 with standard RT-PCR methods. SARS-CoV-2-positive samples were sequenced according to standard library preparation and sequencing protocols. Bioinformatic analysis was done using ARTIC pipelines and Pangolin was used to assign lineages. To construct phylogenetic trees, sequences were first stratified into different COVID-19 waves (waves 1-4) and aligned. Clustering analysis was done and phylogenetic trees constructed. FINDINGS Between March, 2020, and January, 2022, 11 911 confirmed cases of COVID-19 were recorded in The Gambia, and 1638 SARS-CoV-2 genomes were sequenced. Cases were broadly distributed into four waves, with more cases during the waves that coincided with the rainy season (July-October). Each wave occurred after the introduction of new viral variants or lineages, or both, generally those already established in Europe or in other African countries. Local transmission was higher during the first and third waves (ie, those that corresponded with the rainy season), in which the B.1.416 lineage and delta (AY.34.1) were dominant, respectively. The second wave was driven by the alpha and eta variants and the B.1.1.420 lineage. The fourth wave was driven by the omicron variant and was predominantly associated with the BA.1.1 lineage. INTERPRETATION More cases of SARS-CoV-2 infection were recorded in The Gambia during peaks of the pandemic that coincided with the rainy season, in line with transmission patterns for other respiratory viruses. The introduction of new lineages or variants preceded epidemic waves, highlighting the importance of implementing well structured genomic surveillance at a national level to detect and monitor emerging and circulating variants. FUNDING Medical Research Unit The Gambia at London School of Hygiene & Tropical Medicine, UK Research and Innovation, WHO.
Collapse
Affiliation(s)
- Abdoulie Kanteh
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Haruna S Jallow
- National Public Health Reference Laboratory, Ministry of Health, Banjul, The Gambia
| | - Jarra Manneh
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Bakary Sanyang
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Mariama A Kujabi
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Sainabou Laye Ndure
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Sheikh Jarju
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Alhagie Papa Sey
- National Public Health Reference Laboratory, Ministry of Health, Banjul, The Gambia
| | - Dabiri Damilare K
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Yaya Bah
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | | | | | | | | | | | | | - Karen Forrest
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | | | | | - Sheriffo Jagne
- National Public Health Reference Laboratory, Ministry of Health, Banjul, The Gambia
| | - Stéphane Hué
- Centre for Mathematical Modelling of Infectious Diseases and Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Nuredin Mohammed
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Beate Kampmann
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Thushan I de Silva
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia; The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Anna Roca
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Abdul Karim Sesay
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
2
|
Gao L, Zheng C, Shi Q, Wang L, Tia A, Ngobeh J, Liu Z, Dong X, Li Z. Multiple introduced lineages and the single native lineage co-driving the four waves of the COVID-19 pandemic in West Africa. Front Public Health 2022; 10:957277. [PMID: 36187679 PMCID: PMC9521358 DOI: 10.3389/fpubh.2022.957277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a vast burden on public health and socioeconomics in West Africa, but the epidemic situation is unclear. Therefore, we conducted a retrospective analysis of the positive rate, death rate, and diversity of SARS-CoV-2. As of March 31, 2022, a total of 894,813 cases of COVID-19 have been recorded, with 12,028 deaths, both of which were distributed in all 16 countries. There were four waves of COVID-19 during this period. Most cases were recorded in the second wave, accounting for 34.50% of total cases. These data suggest that although West Africa seems to have experienced a low and relatively slow spread of COVID-19, the epidemic was ongoing, evolving with each COVID-19 global pandemic wave. Most cases and most deaths were both recorded in Nigeria. In contrast, the fewest cases and fewest deaths were reported, respectively, in Liberia and Sierra Leone. However, high death rates were found in countries with low incidence rates. These data suggest that the pandemic in West Africa has so far been heterogeneous, which is closely related to the infrastructure of public health and socioeconomic development (e.g., extreme poverty, GDP per capita, and human development index). At least eight SARS-CoV-2 variants were found, namely, Delta, Omicron, Eta, Alpha, Beta, Kappa, Iota, and Gamma, which showed high diversity, implicating that multiple-lineages from different origins were introduced. Moreover, the Eta variant was initially identified in Nigeria and distributed widely. These data reveal that the COVID-19 pandemic in the continent was co-driven by both multiple introduced lineages and a single native lineage. We suggest enhancing the quarantine measures upon entry at the borders and implementing a genome surveillance strategy to better understand the transmission dynamics of the COVID-19 pandemic in West Africa.
Collapse
Affiliation(s)
- Liping Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Sierra Leone-China Friendship Biological Safety Laboratory, Freetown, Sierra Leone
| | - Canjun Zheng
- Sierra Leone-China Friendship Biological Safety Laboratory, Freetown, Sierra Leone,Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Alie Tia
- Sierra Leone-China Friendship Biological Safety Laboratory, Freetown, Sierra Leone
| | - Jone Ngobeh
- Sierra Leone-China Friendship Biological Safety Laboratory, Freetown, Sierra Leone
| | - Zhiguo Liu
- Sierra Leone-China Friendship Biological Safety Laboratory, Freetown, Sierra Leone,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,*Correspondence: Zhiguo Liu
| | - Xiaoping Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Xiaoping Dong
| | - Zhenjun Li
- Chinese Center for Disease Control and Prevention, Beijing, China,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Zhenjun Li
| |
Collapse
|
3
|
Practice of preventive measures and vaccine hesitance for COVID 19 among households in The Gambia, 2021: Study protocol. PLoS One 2022; 17:e0270304. [PMID: 36040883 PMCID: PMC9426907 DOI: 10.1371/journal.pone.0270304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
The first imported confirmed case of COVID 19 was reported in The Gambia on 16th of March 2020 which led to the implementation of relevant public health interventions to prevent further importation and spread of the virus. However, by 8th November 2021, the country had registered cumulatively 9.980 COVID-19 confirmed infection and 341 deaths. The country has developed and implemented Risk Communication and Community Engagement (RCCE) Action Plan since the declaration by WHO that COVID-19 outbreak was a global public health threat and its subsequent proclamation that outbreak was a pandemic. Despite these efforts to sensitize the communities, some Gambians are in denial and/or misinformed of the existence of infection in the country. It is also evident that social distancing and other restrictions have not been adequately implemented by the citizenry. Less 14% of The Gambian population have been vaccinated, and there is evidence of gross vaccine hesitancy and disbelief. There is urgent need to investigate the knowledge, attitude and practices among Gambians about preventive practices especially regarding accepting vaccination to control COVID 19. The proposed study will enrol 1200 households from seven Local Government Areas (LGAs). The findings of this study will inform the messaging and health promotion activities that will be used to better inform the population to ensure compliance and practice of preventive approaches (e.g., use of mask, vaccination)necessary to reduce the negative impact of COVID 19 outbreak in The Gambia. This will thus quicken the recovery process and the return to new normal life.
Collapse
|