1
|
Fujimoto M, Hosono Y, Serada S, Suzuki Y, Ohkawara T, Murata O, Quick A, Suzuki K, Kaneko Y, Takeuchi T, Naka T. Leucine-rich α2-glycoprotein as a useful biomarker for evaluating disease activity in rheumatoid arthritis. Mod Rheumatol 2024; 34:1072-1075. [PMID: 38141246 DOI: 10.1093/mr/road112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Affiliation(s)
- Minoru Fujimoto
- Division of Allergy and Rheumatology, Department of Internal Medicine, School of Medicine Iwate Medical University, Yahaba-cho, Japan
| | - Yuji Hosono
- Division of Allergy and Rheumatology, Department of Internal Medicine, School of Medicine Iwate Medical University, Yahaba-cho, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba-cho, Japan
| | - Yuji Suzuki
- Division of Allergy and Rheumatology, Department of Internal Medicine, School of Medicine Iwate Medical University, Yahaba-cho, Japan
| | - Tomoharu Ohkawara
- Division of Allergy and Rheumatology, Department of Internal Medicine, School of Medicine Iwate Medical University, Yahaba-cho, Japan
| | - Okinori Murata
- Division of Allergy and Rheumatology, Department of Internal Medicine, School of Medicine Iwate Medical University, Yahaba-cho, Japan
| | - Ayumi Quick
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba-cho, Japan
| | - Katuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuji Naka
- Division of Allergy and Rheumatology, Department of Internal Medicine, School of Medicine Iwate Medical University, Yahaba-cho, Japan
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
2
|
Yang J, Yin GN, Kim DK, Han AR, Lee DS, Min KW, Fu Y, Yun J, Suh JK, Ryu JK, Kim HM. Crystal structure of LRG1 and the functional significance of LRG1 glycan for LPHN2 activation. Exp Mol Med 2023:10.1038/s12276-023-00992-4. [PMID: 37121976 DOI: 10.1038/s12276-023-00992-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/21/2023] [Indexed: 05/02/2023] Open
Abstract
The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1), primarily produced by hepatocytes and neutrophils, is a multifunctional protein that modulates various signaling cascades, mainly TGFβ signaling. Serum LRG1 and neutrophil-derived LRG1 have different molecular weights due to differences in glycosylation, but the impact of the differential glycan composition in LRG1 on its cellular function is largely unknown. We previously reported that LRG1 can promote both angiogenic and neurotrophic processes under hyperglycemic conditions by interacting with LPHN2. Here, we determined the crystal structure of LRG1, identifying the horseshoe-like solenoid structure of LRG1 and its four N-glycosylation sites. In addition, our biochemical and cell-biological analyses found that the deglycosylation of LRG1, particularly the removal of glycans on N325, is critical for the high-affinity binding of LRG1 to LPHN2 and thus promotes LRG1/LPHN2-mediated angiogenic and neurotrophic processes in mouse tissue explants, even under normal glucose conditions. Moreover, the intracavernous administration of deglycosylated LRG1 in a diabetic mouse model ameliorated vascular and neurological abnormalities and restored erectile function. Collectively, these data indicate a novel role of LRG1 glycans as molecular switches that can tune the range of LRG1's cellular functions, particularly the LRG1/LPHN2 signaling axis.
Collapse
Affiliation(s)
- Jimin Yang
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Do-Kyun Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Dong Sun Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Kwang Wook Min
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Yaoyao Fu
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jeongwon Yun
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea.
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea.
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Liu JJ, Liu S, Wang J, Pek SL, Lee J, Gurung RL, Ang K, Shao YM, Tavintharan S, Tang WE, Sum CF, Lim SC. Urine Leucine-Rich α-2 Glycoprotein 1 (LRG1) Predicts the Risk of Progression to End-Stage Kidney Disease in Patients With Type 2 Diabetes. Diabetes Care 2023; 46:408-415. [PMID: 36516193 PMCID: PMC9887617 DOI: 10.2337/dc22-1611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Leucine-rich α-2 glycoprotein 1 (LRG1) was recently identified as an amplifier of transforming growth factor-β (TGF-β)-induced kidney fibrosis in animal models. We aimed to study whether urine LRG1 is associated with risk of progression to end-stage kidney disease (ESKD) in individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 1,837 participants with type 2 diabetes and estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m2 were recruited from a regional hospital and a primary care facility. Association of urine LRG1 with risk of ESKD (progression to sustained eGFR <15 mL/min/1.73 m2, dialysis, or death resulting from renal causes) was assessed by survival analyses. RESULTS During a median follow-up of 8.6 (interquartile range 5.8-9.6) years, 134 incident ESKD events were identified. Compared with those in the lowest tertile, participants with baseline urine LRG1 in the highest tertile had a 1.91-fold (95% CI 1.04-3.50) increased risk of progression to ESKD, after adjustment for cardiorenal risk factors, including eGFR and albuminuria. As a continuous variable, 1 SD increment in urine LRG1 was associated with a 1.53-fold (95% CI 1.19-1.98) adjusted risk of ESKD. Of note, the association of urine LRG1 with ESKD was independent of plasma LRG1. Moreover, urine LRG1 was associated with rapid kidney function decline and progression to macroalbuminuria, two common pathways leading to ESKD. CONCLUSIONS Urine LRG1, a TGF-β signaling modulator, predicts risk of progression to ESKD independently of clinical risk factors in patients with type 2 diabetes, suggesting that it may be a novel factor involved in the pathophysiological pathway leading to kidney disease progression.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | - Chee Fang Sum
- Diabetes Center, Admiralty Medical Center, Singapore
| | - Su Chi Lim
- Diabetes Center, Admiralty Medical Center, Singapore
- Saw Swee Hock School of Public Heath, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Corresponding author: Su Chi Lim,
| |
Collapse
|
4
|
Kobayashi M, Nakamura O, Kitahara Y, Inoue N, Tsukui Y, Hasegawa Y, Hiraishi H, Yabuki A, Muraoka A, Osuka S, Iwase A. Serum leucine-rich α2-glycoprotein as a possible marker for inflammatory status in endometriosis. Reprod Med Biol 2023; 22:e12536. [PMID: 37608861 PMCID: PMC10441181 DOI: 10.1002/rmb2.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose This study aimed to investigate whether serum leucine-rich α2-glycoprotein (LRG) is a useful diagnostic biomarker for endometriosis, including the evaluation of treatment efficacy and exploration of LRG production in endometriotic lesions. Methods Forty-three women with endometriomas were compared to 22 women with benign ovarian cysts and 30 women who underwent assisted reproduction as controls. Changes in serum LRG levels were assessed before and after surgery, and during dienogest treatment. LRG expression in endometriotic tissue samples was evaluated using immunoblotting. Results Serum LRG levels in the endometrioma group (80.0 ± 36.3 μg/mL) were significantly higher than those in the benign ovarian cyst (65.1 ± 27.0 μg/mL, p = 0.0265) and control (57.8 ± 22.3 μg/mL, p = 0.0028) groups. Serum LRG levels after endometrioma surgery were significantly lower than preoperative levels (p = 0.0484). Serum LRG levels consistently decreased during dienogest treatment. LRG expression levels were significantly higher in endometriotic tissues than in the normal endometrium. Conclusion Serum LRG, possibly derived from local and systemic origins, could be used as a potential biomarker for the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Mio Kobayashi
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| | - Orie Nakamura
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| | - Yoshikazu Kitahara
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| | - Naoki Inoue
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| | - Yumiko Tsukui
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| | - Yuko Hasegawa
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| | - Hikaru Hiraishi
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| | - Atsushi Yabuki
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Ayako Muraoka
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Satoko Osuka
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Akira Iwase
- Department of Obstetrics and GynecologyGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
5
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Liu JJ, Pek SLT, Liu S, Wang J, Lee J, Ang K, Shao YM, Gurung RL, Tavintharan S, Tang WE, Sum CF, Lim SC. Association of Plasma Leucine-Rich Alpha-2 Glycoprotein 1 (LRG1) with All-Cause and Cause-Specific Mortality in Individuals with Type 2 Diabetes. Clin Chem 2021; 67:1640-1649. [PMID: 34568896 DOI: 10.1093/clinchem/hvab172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Leucine-rich alpha-2 glycoprotein 1 (LRG1) is a circulating protein in the transforming growth factor-beta superfamily. We sought to study whether LRG1 might predict risk for all-cause and cause-specific mortality in individuals with type 2 diabetes. METHODS 2012 outpatients with type 2 diabetes were followed for a median of 7.2 years and 188 death events were identified. Association of LRG1 with risk for mortality was assessed by multivariable Cox regression models. RESULTS Participants with a higher concentration of LRG1 had an increased risk for all-cause mortality [HR (95% CI), 1.76 (1.03-3.01), 1.75 (1.03-2.98), and 4.37 (2.72-7.02) for quartiles 2, 3, and 4, respectively, compared to quartile 1]. The association remained significant after adjustment for known cardio-renal risk factors including estimated glomerular filtration rate and albuminuria [adjusted HR 2.76 (1.66-4.59), quartile 4 versus 1]. As a continuous variable, a 1-SD increment in LRG1 was associated with 1.34 (1.14-1.57)-fold adjusted risk for all-cause mortality. High plasma LRG1 was independently associated with mortality attributable to cardiovascular disease, infection, and renal diseases. Adding LRG1 into a clinical variable-based model improved discrimination (c statistics from 0.828 to 0.842, P = 0.006) and reclassification (net reclassification improvement 0.47, 95% CI 0.28-0.67) for prediction of 5-year all-cause mortality. CONCLUSION Plasma LRG1 predicts risk for all-cause mortality and mortality attributable to cardiovascular disease, infection, and renal disease independent of known cardio-renal risk factors. It may be a potential novel biomarker to improve risk stratification in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sharon L T Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Su Chi Lim
- Diabetes Centre, Admiralty Medical Centre, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|