1
|
Morten JM, Buchanan PJ, Egevang C, Glissenaar IA, Maxwell SM, Parr N, Screen JA, Vigfúsdóttir F, Vogt‐Vincent NS, Williams DA, Williams NC, Witt MJ, Hawkes LA, Thurston W. Global warming and arctic terns: Estimating climate change impacts on the world's longest migration. GLOBAL CHANGE BIOLOGY 2023; 29:5596-5614. [PMID: 37492997 PMCID: PMC10946559 DOI: 10.1111/gcb.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023]
Abstract
Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: 'middle-of-the-road' and 'fossil-fuelled development' scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a 'fossil-fuelled development' scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s-1 ) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.
Collapse
Affiliation(s)
- Joanne M. Morten
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - Pearse J. Buchanan
- Department of Earth, Ocean and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - C. Egevang
- Greenland Institute of Natural ResourcesNuukGreenland
| | - Isolde A. Glissenaar
- Bristol Glaciology Centre, School of Geographical SciencesUniversity of BristolBristolUK
| | - Sara M. Maxwell
- School of Interdisciplinary Arts & SciencesUniversity of WashingtonBothellWashingtonUSA
| | - Nicole Parr
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - James A. Screen
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | | | | | - Daniel A. Williams
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Ned C. Williams
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Matthew J. Witt
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - Lucy A. Hawkes
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | | |
Collapse
|
2
|
Grémillet D, Descamps S. Ecological impacts of climate change on Arctic marine megafauna. Trends Ecol Evol 2023:S0169-5347(23)00082-4. [PMID: 37202284 DOI: 10.1016/j.tree.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023]
Abstract
Global warming affects the Arctic more than any other region. Mass media constantly relay apocalyptic visions of climate change threatening Arctic wildlife, especially emblematic megafauna such as polar bears, whales, and seabirds. Yet, we are just beginning to understand such ecological impacts on marine megafauna at the scale of the Arctic. This knowledge is geographically and taxonomically biased, with striking deficiencies in the Russian Arctic and strong focus on exploited species such as cod. Beyond a synthesis of scientific advances in the past 5 years, we provide ten key questions to be addressed by future work and outline the requested methodology. This framework builds upon long-term Arctic monitoring inclusive of local communities whilst capitalising on high-tech and big data approaches.
Collapse
Affiliation(s)
- David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; Percy FitzPatrick Institute, DST/NRF Excellence Center at the University of Cape Town, Cape Town, South Africa.
| | | |
Collapse
|
3
|
Wilcox AAE, Provencher JF, Henri DA, Alexander SM, Taylor JJ, Cooke SJ, Thomas PJ, Johnson LR. Braiding Indigenous knowledge systems and Western-based sciences in the Alberta oil sands region: A systematic review. Facets (Ott) 2023. [DOI: 10.1139/facets-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The braiding of Indigenous knowledge systems and Western-based sciences offers insights into ecology and has emerged as a way to help address complex environmental issues. We reviewed the publicly available ecological research involving the braiding of Indigenous knowledge systems and Western-based sciences to support collaborative work in the Alberta oil sands region of Canada. We conducted a systematic review, coding for 78 questions in six categories: (1) literature search and bibliographic information; (2) research themes; (3) study setting and design; (4) knowledge systems; (5) power relationships, colonization, and ethical considerations in research; and (6) benefits and challenges of braiding. We identified six articles that braided knowledge, with those articles focusing on environmental management and monitoring for impacts of industrial activity in northern Alberta. Researchers used a broad range of approaches to gather Indigenous knowledge and scientific data and identified multiple challenges (e.g., asymmetries of power, resource availability, and funding) to research. Our findings show that more support is needed to foster, promote, and disseminate interdisciplinary collaborative work involving braiding. Additional support is also required to address Indigenous community research needs related to the assessment of environmental impact and reclamation, as well as the understanding of ecological threats across the region.
Collapse
Affiliation(s)
- Alana A. E. Wilcox
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change, Ottawa, ON K1S 5B6, Canada
| | - Jennifer F. Provencher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change, Ottawa, ON K1S 5B6, Canada
| | - Dominique A. Henri
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Montreal, QC H2Y 2E7, Canada
| | - Steven M. Alexander
- Environment and Biodiversity Sciences, Fisheries and Oceans Canada, Ottawa, ON K2P 2J8, Canada
- Environmental Change and Governance Group, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jessica J. Taylor
- Canadian Centre for Evidence-Based Conservation, Institute of Environmental Sciences and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Steven J. Cooke
- Canadian Centre for Evidence-Based Conservation, Institute of Environmental Sciences and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Philippe J. Thomas
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change, Ottawa, ON K1S 5B6, Canada
| | - Lydia R. Johnson
- School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|