1
|
Sasaki S, Satoh R, Satoh T, Satoh AK. Lytic photoreceptor cell death caused by Rab escort protein deficiency in Drosophila. FEBS Lett 2025. [PMID: 40325959 DOI: 10.1002/1873-3468.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Choroideremia (CHM) is a rare X-linked recessive form of inherited retinal degeneration caused by the deficiency of the Rab escort protein 1 (REP1)-encoding CHM gene. REP1 is essential for the post-translational prenylation of the key players in intracellular membrane trafficking, the Rab GTPases. In this study, we aimed to analyze the mechanisms of retinal degeneration caused by Rep deficiency using the Drosophila retina as a model system. Rab GTPases lost their membrane association ability and diffused into the cytoplasm, and the accumulation of unprenylated Rab6 and Rab7 was observed in Rep-deficient photoreceptors. Notably, Rep-deficient photoreceptors underwent progressive cell death via cell swelling and rupture rather than apoptosis. These findings provide new insight to seek a therapeutic approach to CHM. Impact statement Choroideremia is an inherited retinal degeneration caused by a deficiency of Rab escort protein 1 (Rep-1). We used the Drosophila retina as a model to study the mechanism of retinal degeneration in Rep-deficiency and found that Rep-deficient photoreceptors undergo progressive cell death via cell swelling and rupture rather than apoptosis.
Collapse
Affiliation(s)
- Shogo Sasaki
- Program of Life and Environmental Science, Graduate School of Integrated Science for Life, Hiroshima University, Japan
| | - Rina Satoh
- Program of Life and Environmental Science, Graduate School of Integrated Science for Life, Hiroshima University, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integrated Science for Life, Hiroshima University, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integrated Science for Life, Hiroshima University, Japan
| |
Collapse
|
2
|
Xing Z, Wu F, Cortes-Gomez E, Pao A, Gao L, Douglas A, Li Y, Spernyak JA, Wong GW, Singh PK, Wang J, Liu S, Thanavala Y, MacDonald IM, Mu X, Yu YE. Genetic Analysis of Choroideremia-Related Rab Escort Proteins. Int J Mol Sci 2025; 26:3636. [PMID: 40332248 PMCID: PMC12027379 DOI: 10.3390/ijms26083636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Choroideremia is a rare X-linked recessive retinal disorder characterized by progressive vision loss caused by retinal degeneration resulting from mutations in the CHM gene, which encodes Rab escort protein 1 (REP-1). In humans and mice, the Rab escort protein (REP) family consists of two members, REP-1 and REP-2, with REP-2 hypothesized to compensate for REP-1 deficiency in tissues outside the eye in choroideremia. In this study, we conducted a systematic mutational analysis of the mouse orthologs of REP-1 and REP-2. Blood analyses revealed metabolic abnormalities in the mutant mice deficient for REP-1, resembling the systemic metabolic disturbances observed in individuals with choroideremia, such as altered lipid and hemoglobin metabolism. We also observed an elevation in systemic inflammatory biomarkers in these mutant mice. Interestingly, these systemic abnormalities emerged before retinal degeneration became detectable in REP-1-deficient mice. Transcriptomic analysis of retinas isolated from REP-1 deficient mice revealed enrichment of proinflammatory signaling pathways. These results suggest important similarities between choroideremia and some forms of retinitis pigmentosa. While engineered loss of REP-2 alone caused no detectable phenotypic changes, dual deficiency in REP-1 and REP-2 resulted in lethality under both in vivo and in vitro conditions. Our findings offer novel insights into REPs and deepen our understanding of choroideremia, which may contribute to the development of new treatments for this genetic condition.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Z.X.); (A.D.)
| | - Fuguo Wu
- Department of Ophthalmology, Ross Eye Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA; (F.W.)
| | - Eduardo Cortes-Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Annie Pao
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Z.X.); (A.D.)
| | - Lingqiu Gao
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Z.X.); (A.D.)
| | - Avrium Douglas
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Z.X.); (A.D.)
| | - Yichen Li
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Prashant K. Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ian M. MacDonald
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Xiuqian Mu
- Department of Ophthalmology, Ross Eye Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA; (F.W.)
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Z.X.); (A.D.)
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Abdalla Elsayed MEA, Cehajic-Kepetanovic J, MacLaren RE. Gene therapy for choroideremia: progress, potential and pitfalls. Expert Opin Biol Ther 2025; 25:257-263. [PMID: 39893699 PMCID: PMC11912956 DOI: 10.1080/14712598.2025.2459850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Choroideremia is a rare disease with a significant disease burden. Gene-supplementation methods for choroideremia gene therapy have been the most successful form of gene therapy thus far. AREAS COVERED The aim of the current review is to provide an overview of current progress of gene therapy trials to date, with a focus on potential and pitfalls of such trials. We propose a novel end point that may be clinically meaningful for obtaining regulatory approval in subsequent clinical trials. Additionally, we offer recommendations for further optimization of surgical techniques. EXPERT OPINION Lessons learnt from this phase 3 clinical trial, encompassing optimal vector design, delivery techniques, patient selection criteria, and long-term safety profiles can be used in the development of treatments for polygenic retinal disorders, which may necessitate a more nuanced approach due to genetic complexity.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jasmina Cehajic-Kepetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Nonarath HJT, Simpson SL, Slobodianuk TL, Tran H, Collery RF, Dinculescu A, Link BA. The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors. PLoS Genet 2025; 21:e1011205. [PMID: 40067805 PMCID: PMC11925288 DOI: 10.1371/journal.pgen.1011205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular dysfunction. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. The retinas of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not reduce the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.
Collapse
Affiliation(s)
- Hannah J. T. Nonarath
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha L. Simpson
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Tricia L. Slobodianuk
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hai Tran
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ross F. Collery
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States of America
| | - Brian A. Link
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
5
|
Waldock WJ, Taylor LJ, Sperring S, Staurenghi F, Martinez-Fernandez de la Camara C, Whitfield J, Clouston P, Yusuf IH, MacLaren RE. A hypomorphic variant of choroideremia is associated with a novel intronic mutation that leads to exon skipping. Ophthalmic Genet 2024; 45:210-217. [PMID: 38273808 DOI: 10.1080/13816810.2023.2270554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Molecular confirmation of pathogenic sequence variants in the CHM gene is required prior to enrolment in retinal gene therapy clinical trials for choroideremia. Individuals with mild choroideremia have been reported. The molecular basis of genotype-phenotype associations is of clinical relevance since it may impact on selection for retinal gene therapy. METHODS AND MATERIALS Genetic testing and RNA analysis were undertaken in a patient with mild choroideremia to confirm the pathogenicity of a novel intronic variant in CHM and to explore the mechanism underlying the mild clinical phenotype. RESULTS A 42-year-old male presented with visual field loss. Fundoscopy and autofluorescence imaging demonstrated mild choroideremia for his age. Genetic analysis revealed a variant at a splice acceptor site in the CHM gene (c.1350-3C > G). RNA analysis demonstrated two out-of-frame transcripts, suggesting pathogenicity, without any detectable wildtype transcripts. One of the two out-of-frame transcripts is present in very low levels in healthy controls. DISCUSSION Mild choroideremia may result from +3 or -3 splice site variants in CHM. It is presumed that the resulting mRNA transcripts may be partly functional, thereby preventing the development of the null phenotype. Choroideremia patients with such variants may present challenges for gene therapy since there may be residual transcript activity which could result in long-lasting visual function which is atypical for this disease.
Collapse
Affiliation(s)
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Penny Clouston
- Oxford Regional Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Imran H Yusuf
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Nonarath HJT, Simpson SL, Slobodianuk TL, Collery RF, Dinculescu A, Link BA. The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582878. [PMID: 38464015 PMCID: PMC10925332 DOI: 10.1101/2024.02.29.582878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular balance issues. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. Retina of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not rescue the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.
Collapse
Affiliation(s)
- Hannah J. T. Nonarath
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Samantha L. Simpson
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Tricia L. Slobodianuk
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ross F. Collery
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32611
| | - Brian A. Link
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
7
|
Sarkar H, Tracey-White D, Hagag AM, Burgoyne T, Nair N, Jensen LD, Edwards MM, Moosajee M. Loss of REP1 impacts choroidal melanogenesis and vasculogenesis in choroideremia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166963. [PMID: 37989423 PMCID: PMC11157692 DOI: 10.1016/j.bbadis.2023.166963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, however, the involvement of the choroid in disease progression is not fully understood. CHM is caused by mutations in the CHM gene, encoding the ubiquitously expressed Rab escort protein 1 (REP1). REP1 plays an important role in intracellular trafficking of vesicles, including melanosomes. In this study, we examined the ultrastructure of the choroid in chmru848 fish and Chmnull/WT mouse models using transmission electron and confocal microscopy. Significant pigmentary disruptions were observed, with lack of melanosomes in the choroid of chmru848 fish from 4 days post fertilisation (4dpf), and a reduction in choroidal blood vessel diameter and interstitial pillars suggesting a defect in vasculogenesis. Total melanin and expression of melanogenesis genes tyr, tryp1a, mitf, dct and pmel were also reduced from 4dpf. In Chmnull/WT mice, choroidal melanosomes were significantly smaller at 1 month, with reduced eumelanin at 1 year. The choroid in CHM patients were also examined using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) and the area of preserved choriocapillaris (CC) was found to be smaller than that of overlying photoreceptors, suggesting that the choroid is degenerating at a faster rate. Histopathology of an enucleated eye from a 74-year-old CHM male patient revealed isolated areas of RPE but no associated underlying CC. Pigmentary disruptions in CHM animal models reveal an important role for REP1 in melanogenesis, and drugs that improve melanin production represent a potential novel therapeutic avenue.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Dhani Tracey-White
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Ahmed M Hagag
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK; Boehringer Ingelheim Limited, Bracknell, UK
| | - Thomas Burgoyne
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Neelima Nair
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Lasse D Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Malia M Edwards
- The Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Gierke K, Lux UT, Regus-Leidig H, Brandstätter JH. The first synapse in vision in the aging mouse retina. Front Cell Neurosci 2023; 17:1291054. [PMID: 38026697 PMCID: PMC10654782 DOI: 10.3389/fncel.2023.1291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Vision is our primary sense, and maintaining it throughout our lifespan is crucial for our well-being. However, the retina, which initiates vision, suffers from an age-related, irreversible functional decline. What causes this functional decline, and how it might be treated, is still unclear. Synapses are the functional hub for signal transmission between neurons, and studies have shown that aging is widely associated with synaptic dysfunction. In this study, we examined the first synapse of the visual system - the rod and cone photoreceptor ribbon synapse - in the mouse retina using light and electron microscopy at 2-3 months, ~1 year, and >2 years of age. We asked, whether age-related changes in key synaptic components might be a driver of synaptic dysfunction and ultimately age-related functional decline during normal aging. We found sprouting of horizontal and bipolar cells, formation of ectopic photoreceptor ribbon synapses, and a decrease in the number of rod photoreceptors and photoreceptor ribbon synapses in the aged retina. However, the majority of the photoreceptors did not show obvious changes in the structural components and protein composition of their ribbon synapses. Noteworthy is the increase in mitochondrial size in rod photoreceptor terminals in the aged retina.
Collapse
Affiliation(s)
| | | | | | - Johann Helmut Brandstätter
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Xu P, Jiang YY, Morgan JIW. Cone Photoreceptor Morphology in Choroideremia Assessed Using Non-Confocal Split-Detection Adaptive Optics Scanning Light Ophthalmoscopy. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37504961 PMCID: PMC10383007 DOI: 10.1167/iovs.64.10.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose Choroideremia (CHM) is an X-linked inherited retinal degeneration causing loss of the photoreceptors, retinal pigment epithelium, and choriocapillaris, although patients typically retain a central island of relatively preserved, functioning retina until late-stage disease. Here, we investigate cone photoreceptor morphology within the retained retinal island by examining cone inner segment area, density, circularity, and intercone space. Methods Using a custom-built, multimodal adaptive optics scanning light ophthalmoscope, nonconfocal split-detection images of the photoreceptor mosaic were collected at 1°, 2°, and 4° temporal to the fovea from 13 CHM and 12 control subjects. Cone centers were manually identified, and cone borders were segmented. A custom MATLAB script was used to extract area and circularity for each cone and calculate the percentage of intercone space in each region of interest. Bound cone density was also calculated. An unbalanced two-way ANOVA and Bonferroni post hoc tests were used to assess statistical differences between the CHM and control groups and along retinal eccentricity. Results Cone density was lower in the CHM group than in the control group (P < 0.001) and decreased with eccentricity from the fovea (P < 0.001). CHM cone inner segments were larger in area (P < 0.001) and more circular (P = 0.042) than those of the controls. Intercone space in CHM was also higher than in the controls (P < 0.001). Conclusions Cone morphology is altered in CHM compared to control, even within the centrally retained, functioning retinal area. Further studies are required to determine whether such morphology is a precursor to cone degeneration.
Collapse
Affiliation(s)
- Peiluo Xu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yu You Jiang
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
10
|
Todorova V, Stauffacher MF, Ravotto L, Nötzli S, Karademir D, Ebner LJA, Imsand C, Merolla L, Hauck SM, Samardzija M, Saab AS, Barros LF, Weber B, Grimm C. Deficits in mitochondrial TCA cycle and OXPHOS precede rod photoreceptor degeneration during chronic HIF activation. Mol Neurodegener 2023; 18:15. [PMID: 36882871 PMCID: PMC9990367 DOI: 10.1186/s13024-023-00602-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Major retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and retinal detachment, are associated with a local decrease in oxygen availability causing the formation of hypoxic areas affecting the photoreceptor (PR) cells. Here, we addressed the underlying pathological mechanisms of PR degeneration by focusing on energy metabolism during chronic activation of hypoxia-inducible factors (HIFs) in rod PR. METHODS We used two-photon laser scanning microscopy (TPLSM) of genetically encoded biosensors delivered by adeno-associated viruses (AAV) to determine lactate and glucose dynamics in PR and inner retinal cells. Retinal layer-specific proteomics, in situ enzymatic assays and immunofluorescence studies were used to analyse mitochondrial metabolism in rod PRs during chronic HIF activation. RESULTS PRs exhibited remarkably higher glycolytic flux through the hexokinases than neurons of the inner retina. Chronic HIF activation in rods did not cause overt change in glucose dynamics but an increase in lactate production nonetheless. Furthermore, dysregulation of the oxidative phosphorylation pathway (OXPHOS) and tricarboxylic acid (TCA) cycle in rods with an activated hypoxic response decelerated cellular anabolism causing shortening of rod photoreceptor outer segments (OS) before onset of cell degeneration. Interestingly, rods with deficient OXPHOS but an intact TCA cycle did not exhibit these early signs of anabolic dysregulation and showed a slower course of degeneration. CONCLUSION Together, these data indicate an exceeding high glycolytic flux in rods and highlight the importance of mitochondrial metabolism and especially of the TCA cycle for PR survival in conditions of increased HIF activity.
Collapse
Affiliation(s)
- Vyara Todorova
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Mia Fee Stauffacher
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Sarah Nötzli
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Cornelia Imsand
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Luca Merolla
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Munich, Germany
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile.,Universidad San Sebastián, Valdivia, Chile
| | - Bruno Weber
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland.
| |
Collapse
|
11
|
Morgan JIW, Jiang YY, Vergilio GK, Serrano LW, Pearson DJ, Bennett J, Maguire AM, Aleman TS. Short-term Assessment of Subfoveal Injection of Adeno-Associated Virus-Mediated hCHM Gene Augmentation in Choroideremia Using Adaptive Optics Ophthalmoscopy. JAMA Ophthalmol 2022; 140:411-420. [PMID: 35266957 PMCID: PMC8914909 DOI: 10.1001/jamaophthalmol.2022.0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022]
Abstract
Importance Subretinal injection for gene augmentation in retinal degenerations forcefully detaches the neural retina from the retinal pigment epithelium, potentially damaging photoreceptors and/or retinal pigment epithelium cells. Objective To use adaptive optics scanning light ophthalmoscopy (AOSLO) to assess the short-term integrity of the cone mosaic following subretinal injections of adeno-associated virus vector designed to deliver a functional version of the CHM gene (AAV2-hCHM) in patients with choroideremia. Design, Setting, and Participants This longitudinal case series study enrolled adult patients with choroideremia from February 2015 to January 2016 in the US. To be included in the study, study participants must have received uniocular subfoveal injections of low-dose (5 × 1010 vector genome per eye) or high-dose (1 × 1011 vector genome per eye) AAV2-hCHM. Analysis began February 2015. Main Outcomes and Measures The macular regions of both eyes were imaged before and 1 month after injection using a custom-built multimodal AOSLO. Postinjection cone inner segment mosaics were compared with preinjection mosaics at multiple regions of interest. Colocalized spectral-domain optical coherence tomography and dark-adapted cone sensitivity was also acquired at each time point. Results Nine study participants ranged in age from 26 to 50 years at the time of enrollment, and all were White men. Postinjection AOSLO images showed preservation of the cone mosaic in all 9 AAV2-hCHM-injected eyes. Mosaics appeared intact and contiguous 1 month postinjection, with the exception of foveal disruption in 1 patient. Optical coherence tomography showed foveal cone outer segment shortening postinjection. Cone-mediated sensitivities were unchanged in 8 of 9 injected and 9 of 9 uninjected eyes. One participant showed acute loss of foveal optical coherence tomography cone outer segment-related signals along with cone sensitivity loss that colocalized with disruption of the mosaic on AOSLO. Conclusions and Relevance Integrity of the cone mosaic is maintained following subretinal delivery of AAV2-hCHM, providing strong evidence in support of the safety of the injections. Minor foveal thinning observed following surgery corresponds with short-term cone outer segment shortening rather than cone cell loss. Foveal cone loss in 1 participant raises the possibility of individual vulnerability to the subretinal injection.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Grace K. Vergilio
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Leona W. Serrano
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Denise J. Pearson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Jean Bennett
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Albert M. Maguire
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Tomas S. Aleman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| |
Collapse
|
12
|
Fry LE, Patrício MI, Jolly JK, Xue K, MacLaren RE. Expression of Rab Prenylation Pathway Genes and Relation to Disease Progression in Choroideremia. Transl Vis Sci Technol 2021; 10:12. [PMID: 34254989 PMCID: PMC8287038 DOI: 10.1167/tvst.10.8.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Choroideremia results from the deficiency of Rab Escort Protein 1 (REP1), encoded by CHM, involved in the prenylation of Rab GTPases. Here, we investigate whether the transcription and expression of other genes involved in the prenylation of Rab proteins correlates with disease progression in a cohort of patients with choroideremia. Methods Rates of retinal pigment epithelial area loss in 41 patients with choroideremia were measured using fundus autofluorescence imaging for up to 4 years. From lysates of cultured skin fibroblasts donated by patients (n = 15) and controls (n = 14), CHM, CHML, RABGGTB and RAB27A mRNA expression, and REP1 and REP2 protein expression were compared. Results The central autofluorescent island area loss in patients with choroideremia occurred with a mean half-life of 5.89 years (95% confidence interval [CI] = 5.09-6.70), with some patients demonstrating relatively fast or slow rates of progression (range = 3.3-14.1 years). Expression of CHM mRNA and REP1 protein were significantly decreased in all patients. No difference in expression of CHML, RABGGTB, RAB27A, or REP2 was seen between patients and controls. No correlation was seen between expression of the genes analyzed and rates of retinal degeneration. Non-sense induced transcriptional compensation of CHML, a CHM-like retrogene, was not observed in patients with CHM variants predicted to undergo non-sense mediated decay. Conclusions Patients with choroideremia, who are deficient for REP1, show normal levels of expression of other genes involved in Rab prenylation, which do not appear to play any modifying role in the rate of disease progression. Translational Relevance There remains little evidence for selection of patients for choroideremia gene therapy based on genotype.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|