1
|
Ayyappan V, Sripathi VR, Xie S, Saha MC, Hayford R, Serba DD, Subramani M, Thimmapuram J, Todd A, Kalavacharla VK. Genome-wide profiling of histone (H3) lysine 4 (K4) tri-methylation (me3) under drought, heat, and combined stresses in switchgrass. BMC Genomics 2024; 25:223. [PMID: 38424499 PMCID: PMC10903042 DOI: 10.1186/s12864-024-10068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA.
| | | | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Rita Hayford
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | | | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
- Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
2
|
Feng S, Long X, Gao M, Zhao Y, Guan X. Global identification of natural antisense transcripts in Gossypium hirsutum and Gossypium barbadense under chilling stress. iScience 2023; 26:107362. [PMID: 37554457 PMCID: PMC10405317 DOI: 10.1016/j.isci.2023.107362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Natural antisense transcripts (NATs) in model plants have been recognized as important regulators of gene expression under abiotic stresses. However, the functional roles of NATs in crops under low temperature are still unclear. Here, we identified 815 and 689 NATs from leaves of Gossypium hirsutum and G. barbadense under chilling stress. Among those, 224 NATs were identified as interspecific homologs between the two species. The correlation coefficients for expression of NATs and their cognate sense genes (CSG) were 0.43 and 0.37 in G. hirsutum and G. barbadense, respectively. Furthermore, expression of interspecific NATs and CSGs alike was highly consistent under chilling stress with correlation coefficients of 0.90-0.91. Four cold-associated NATs were selected for functional validation using virus-induced gene silencing (VIGS). Our results suggest that CAN1 engage in the molecular regulation of chilling stress by regulating SnRK2.8 expression. This highly conserved NAT have valuable potential for applications in breeding cold-tolerant cotton.
Collapse
Affiliation(s)
- Shouli Feng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xuan Long
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| |
Collapse
|
3
|
Transcriptional Association between mRNAs and Their Paired Natural Antisense Transcripts Following Fusarium oxysporum Inoculation in Brassica rapa L. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in abiotic and biotic stress responses; however, studies on the mechanism of regulation of lncRNA expression are limited in plants. The present study examined the relationship between lncRNA expression level and two active histone modifications (H3K4me3 and H3K36me3) in Brassica rapa. Both histone marks were enriched in the chromatin regions encoding lncRNAs, especially around the transcription start site. The transcription level of long intergenic noncoding RNAs was positively associated with the level of H3K4me3 and H3K36me3, while this association was not observed in natural antisense RNAs (NATs) and intronic noncoding RNAs. As coordinate expression of mRNAs and paired NATs under biotic stress treatment has been identified, the transcriptional relationship between mRNAs and their paired NATs following Fusarium oxysporum f. sp. conglutinans (Foc) inoculation was examined. A positive association of expression levels between mRNAs and their paired NATs following Foc inoculation was observed. This association held for several defense-response-related genes and their NAT pairs. These results suggest that coordinate expression of mRNAs and paired NATs plays a role in the defense response against Foc.
Collapse
|