1
|
Aoki S, Wakatsuki M, Tsuji H, Makishima H, Ikawa H, Yamada S, Inoue Y, Goto H, Suzuki S, Kubota T, Ishikawa H, Mizota A. Long-Term Outcomes of Ocular and Visual Preservation After Carbon Ion Radiation Therapy for Choroidal Malignant Melanoma. Int J Radiat Oncol Biol Phys 2025; 121:991-999. [PMID: 39424082 DOI: 10.1016/j.ijrobp.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE This study aimed to evaluate the long-term results of carbon ion radiation therapy (CIRT) for choroidal malignant melanoma (CMM), especially regarding the preservation of the eye and visual acuity (VA). METHODS AND MATERIALS A total of 250 patients with intraocularly localized CMM treated with CIRT between January 2003 and September 2021 were included. The dose prescription included 60 to 85 Gy/4 to 5 fr, with only 68 Gy/4 fr used from 2018 onward. The rotating gantry system with scanning beams was introduced in April 2018. Adverse events (AEs) were graded according to the Common Terminology Criteria for AEs (version 5.0.). For secondary glaucoma, tumor-related visual field defects were excluded from the evaluation. For VA, 245 patients with VA ≥ light perception (LP) were followed up. Effective VA (≥20/200, Snellen equivalent), counting fingers, and LP were used as indicators. RESULTS The median age was 55 (15-86) years. The T categories 1, 2, 3, and 4 were observed in 16 (6.4%), 41 (16.4%), 189 (75.6%), and 4 (1.6%) patients, respectively. With a median follow-up of 72.5 months, the 5- and 8-year overall survival rates were 87.5% and 84.2%, respectively; the 5- and 8-year local control rates were 94.4% and 92.9%, respectively. At the last follow-up, 19 of 250 patients (7.6%) underwent enucleation, 15 caused by local recurrence and 4 caused by AEs. Secondary glaucoma grades 1, 2, and 3 to 4 were observed in 22 (8.8%), 49 (19.6%), and 5 (2.0%) of patients, respectively. At the last follow-up, ≥ effective VA, ≥ counting fingers, and ≥ LP were maintained in 80 (33%), 120 (49%), and 154 (63%) of patients, respectively. Preservation rate of ≥ LP vision at 5 and 8 years after CIRT was 65.7% and 55.3%, respectively. CONCLUSIONS CIRT for CMM is a promising treatment for both tumor control and preservation of the eye and VA.
Collapse
Affiliation(s)
- Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirokazu Makishima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji Inoue
- Department of Ophthalmology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Shigenobu Suzuki
- Department of Ophthalmic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toshinobu Kubota
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, Tokyo, Japan; Nishikasai Inouye Eye Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Tseng YH, Hsu CA, Chou YB. Comparing efficacy of charged-particle therapy with brachytherapy in treatment of uveal melanoma. Eye (Lond) 2024; 38:1882-1890. [PMID: 38565600 PMCID: PMC11226678 DOI: 10.1038/s41433-024-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common primary ocular tumour in adults. The most used eye-preserving treatments are charged-particle therapy (CPT) and brachytherapy. We performed a systematic review and meta-analysis to compare efficacies and complications of these two radiotherapies. METHODS We searched EMBASE, PubMed, MEDLINE, and the Cochrane Library from January 2012 to December 2022. Two independent reviewers identified controlled studies comparing outcomes of CPT versus brachytherapy. Case series that utilize either treatment modality were also reviewed. RESULTS One hundred fifty studies met the eligibility criteria, including 2 randomized control trials, 5 controlled cohort studies, and 143 case series studies. We found significant reduction in local recurrence rate among patients treated with CPT compared to brachytherapy (Odds ratio[OR] 0.38, 95% Confidence interval [CI] 0.24-0.60, p < 0.01). Analysis also showed a trend of increased risks of secondary glaucoma after CPT. No statistically significant differences were found in analyzing risks of mortality, enucleation, and cataract. CONCLUSIONS Our study suggested no difference in mortality, enucleation rate and cataract formation rate comparing the two treatments. Lower local recurrence rate and possibly higher secondary glaucoma incidence was noted among patients treated with CPT. Nevertheless, the overall level of evidence is limited, and further high-quality studies are necessary to provide a more definitive conclusion.
Collapse
Affiliation(s)
- Yu-Hsuan Tseng
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Chia-An Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yu-Bai Chou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Banou L, Tsani Z, Arvanitogiannis K, Pavlaki M, Dastiridou A, Androudi S. Radiotherapy in Uveal Melanoma: A Review of Ocular Complications. Curr Oncol 2023; 30:6374-6396. [PMID: 37504330 PMCID: PMC10378371 DOI: 10.3390/curroncol30070470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Uveal melanoma represents the most prevalent form of primary malignant intraocular tumor in adults. Historically, enucleation was considered the gold-standard approach in the treatment of uveal melanoma. Currently, radiotherapy is the most commonly used therapy, aiming at a better quality of life. However, radiotherapy can result in several ocular complications, some of which may be vision-threatening. Radiation-induced dry eye, scleral necrosis, cataract, rubeosis iridis, neovascular glaucoma, radiation retinopathy, maculopathy, and optic neuropathy are the most common complications. This article aims to summarize the current literature regarding the ocular complications after radiotherapy, as well as their clinical features, risk factors, and management strategies. A thorough understanding of these issues is crucial for ophthalmologists and oncologists to provide optimal patient care, improve visual outcomes, and minimize long-term complications.
Collapse
Affiliation(s)
- Lamprini Banou
- Department of Ophthalmology, University of Thessaly, 41110 Larissa, Greece
| | - Zoi Tsani
- Department of Ophthalmology, University of Thessaly, 41110 Larissa, Greece
| | | | - Maria Pavlaki
- Department of Ophthalmology, University of Thessaly, 41110 Larissa, Greece
| | - Anna Dastiridou
- Department of Ophthalmology, University of Thessaly, 41110 Larissa, Greece
| | - Sofia Androudi
- Department of Ophthalmology, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
4
|
Jarczak J, Karska-Basta I, Romanowska-Dixon B. Deterioration of Visual Acuity after Brachytherapy and Proton Therapy of Uveal Melanoma, and Methods of Counteracting This Complication Based on Recent Publications. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1131. [PMID: 37374335 DOI: 10.3390/medicina59061131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. The eyeball is the most common extracutaneous location of melanoma. UM is a huge threat to a patient's life. It metastasizes distantly via blood vessels, but it can also spread locally and infiltrate extraocular structures. The treatment uses surgical methods, which include, among others, enucleation and conservative methods, such as brachytherapy (BT), proton therapy (PT), stereotactic radiotherapy (SRT), stereotactic radiosurgery (SRS), transpupillary thermotherapy (TTT) and photodynamic therapy. The key advantage of radiotherapy, which is currently used in most patients, is the preservation of the eyeball with the risk of metastasis and mortality comparable to that of enucleation. Unfortunately, radiotherapy very often leads to a significant deterioration in visual acuity (VA) as a result of radiation complications. This article is a review of the latest research on ruthenium-106 (Ru-106) brachytherapy, iodine-125 (I-125) brachytherapy and proton therapy of uveal melanoma that took into account the deterioration of eye function after therapy, and also the latest studies presenting the new concepts of modifications to the applied treatments in order to reduce radiation complications and maintain better visual acuity in treated patients.
Collapse
Affiliation(s)
- Jakub Jarczak
- Department of Ophthalmology, Division of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland
- Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, 31-530 Krakow, Poland
| | - Izabella Karska-Basta
- Department of Ophthalmology, Division of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology, Division of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland
| |
Collapse
|
5
|
Klaassen L, Jaarsma-Coes MG, Verbist BM, Vu TK, Marinkovic M, Rasch CR, Luyten GP, Beenakker JWM. Automatic Three-Dimensional Magnetic Resonance-based measurements of tumour prominence and basal diameter for treatment planning of uveal melanoma. Phys Imaging Radiat Oncol 2022; 24:102-110. [PMID: 36386446 PMCID: PMC9649381 DOI: 10.1016/j.phro.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Purpose Three-dimensional (3D) Magnetic Resonance Imaging (MRI) is increasingly used to complement conventional two-dimensional ultrasound in the assessment of tumour dimension measurement of uveal melanoma. However, the lack of definitions of the 3D measurements of these tumour dimensions hinders further adaptation of MRI in ocular radiotherapy planning. In this study, we composed 3D MR-based definitions of tumour prominence and basal diameter and compared them to conventional ultrasound. Materials and methods Tumours were delineated on 3DT2 and contrast-enhanced 3DT1 (T1gd) MRI for 25 patients. 3D definitions of tumour prominence and diameter were composed and evaluated automatically on the T1gd and T2 contours. Automatic T1gd measurements were compared to manual MRI measurements, to automatic T2 measurements and to manual ultrasound measurements. Results Prominence measurements were similar for all modalities (median absolute difference 0.3 mm). Automatic T1gd diameter measurements were generally larger than manual MRI, automatic T2 and manual ultrasound measurements (median absolute differences of 0.5, 1.6 and 1.1 mm respectively), mainly due to difficulty defining the axis of the largest diameter. Largest differences between ultrasound and MRI for both prominence and diameter were found in anteriorly located tumours (up to 1.6 and 4.5 mm respectively), for which the tumour extent could not entirely be visualized with ultrasound. Conclusions The proposed 3D definitions for tumour prominence and diameter agreed well with ultrasound measurements for tumours for which the extent was visible on ultrasound. 3D MRI measurements generally provided larger diameter measurements than ultrasound. In anteriorly located tumours, the MRI measurements were considered more accurate than conventional ultrasound.
Collapse
Affiliation(s)
- Lisa Klaassen
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Myriam G. Jaarsma-Coes
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Berit M. Verbist
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Holland Particle Therapy Center, PO Box 110, 2600 AC Delft, the Netherlands
| | - T.H. Khanh Vu
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Marina Marinkovic
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Coen R.N. Rasch
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Holland Particle Therapy Center, PO Box 110, 2600 AC Delft, the Netherlands
| | - Gregorius P.M. Luyten
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Jan-Willem M. Beenakker
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
6
|
Dosimetric analysis of intraocular hemorrhage in nonsquamous head and neck cancers treated with carbon-ion radiotherapy. Radiother Oncol 2022; 170:143-150. [DOI: 10.1016/j.radonc.2022.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
|