1
|
Săcărescu L, Dascălu M, Chibac-Scutaru AL, Roman G. Synthesis, structural characterization, photophysical study and investigation as fluorescent sensor towards metal ions of 1,2,3-triazole–azaindene hybrids. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Mane KD, Mukherjee A, Das GK, Suryavanshi G. Acetic Acid-Catalyzed Regioselective C(sp 2)-H Bond Functionalization of Indolizines: Concomitant Involvement of Synthetic and Theoretical Studies. J Org Chem 2022; 87:5097-5112. [PMID: 35337186 DOI: 10.1021/acs.joc.1c03019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atom economical and environmentally benign protocol has been developed for the regioselective C(sp2)-H bond functionalization of indolizines. The acetic acid-catalyzed cross-coupling reaction proceeds under metal-free conditions, producing a wide range of synthetically useful indolizine derivatives. The present protocol showed good functional group tolerance and broad substrate scope in good to excellent yields. Quantum mechanical investigation using density functional theory (DFT) has played a crucial role in understanding that acetic acid is the key player in determining the actual pathway as the catalyst and its ultrafast nature. Different pathways involving inter- and intramolecular proton transfer, with or without acetic acid, were investigated. Calculated results revealed that a proton shuttle mechanism is involved for the least energetic, most favorable acetic acid-catalyzed pathway. Furthermore, regioselectivity has also been explained theoretically.
Collapse
Affiliation(s)
- Kishor D Mane
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anirban Mukherjee
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki-shi, Osaka 567- 0047, Japan
| | - Gourab Kanti Das
- Department of Chemistry, Institute of Science (Siksha Bhavana), Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
3
|
Baussanne I, Firstova O, Dediu AB, Larosa C, Furdui B, Ghinea IO, Thomas A, Chierici S, Dinica R, Demeunynck M. Interest of novel N-alkylpyridinium-indolizine hybrids in the field of Alzheimer's disease: Synthesis, characterization and evaluation of antioxidant activity, cholinesterase inhibition, and amyloid fibrillation interference. Bioorg Chem 2021; 116:105390. [PMID: 34670332 DOI: 10.1016/j.bioorg.2021.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022]
Abstract
A small library of molecules combining indolizine and N-alkyl pyridinium was synthesized and evaluated in a multi-target-directed-ligand strategy for Alzheimer's disease (AD) treatment. The new compounds were classified in three series depending on the number of methylene residues linking the two heterocycles (Ind-PyCx with x = 0, 2 or 3). The molecules were synthesized from the corresponding bis-pyridines by two-step formation of the indolizine core including mono-alkylation of pyridine and 1,3-dipolar cycloaddition with an alkylpropiolate. Their activities against AD's key-targets were evaluated in vitro: acetyl- and butyrylcholinesterase (AChE and BChE) inhibition, antioxidant properties and inhibition of amyloid fibril formation. None of the three series showed significant activities against all the targets. The Ind-PyC2 and Ind-PyC3 series are active on eeAChE and hAChE (µM IC50 values). Most of the positively charged molecules from these two series also appeared active against eqBChE, however they lost their activity on hBChE. Comparative molecular modeling of 13 and 15 docked in hAChE and hBChE highlighted the importance of the substituent (p-methoxybenzoyl or methyloxycarbonyl, respectively) located on the indolizine C-3 for the binding. The larger molecule 13 fits more tightly at the active site of the two enzymes than 15 that shows a larger degree of freedom. The Ind-PyC2 and Ind-PyC3 hybrids displayed some antioxidant activity when tested at 750 µg/mL (up to 95% inhibition of DPPH radical scavenging for 10). In both series, most hybrids were also able to interact with amyloid fibers, even if the inhibitory effect was observed at a high 100 µM concentration. The Ind-PyC0 molecules stand out completely due to their spectroscopic properties which prevent their evaluation by Ellman's and ThT assays. However, these molecules showed interesting features in the presence of preformed fibers. In particular, the strong increase in fluorescence of 3 in the presence of amyloid fibers is very promising for its use as a fibrillation fluorescent reporter dye.
Collapse
Affiliation(s)
| | - Olga Firstova
- Univ. Grenoble Alpes, CNRS, DPM, Grenoble, France; Univ. Grenoble Alpes, CNRS, DCM, Grenoble, France
| | - Andreea Botezatu Dediu
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | | | - Bianca Furdui
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | - Ioana Ottilia Ghinea
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | - Aline Thomas
- Univ. Grenoble Alpes, CNRS, DPM, Grenoble, France
| | | | - Rodica Dinica
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania.
| | | |
Collapse
|
4
|
Kim D, Lee JH, Kim HY, Shin J, Kim K, Lee S, Park J, Kim I, Kim Y. Correction: Fluorescent indolizine derivative YI-13 detects amyloid-β monomers, dimers, and plaques in the brain of 5XFAD Alzheimer transgenic mouse model. PLoS One 2021; 16:e0250194. [PMID: 33831134 PMCID: PMC8031430 DOI: 10.1371/journal.pone.0250194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|